lsst.meas.modelfit  20.0.0+5
AdaptiveImportanceSampler.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2008-2013 LSST Corporation.
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_AdaptiveImportanceSampler_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_AdaptiveImportanceSampler_h_INCLUDED
26 
27 #include <map>
28 
29 #include "lsst/pex/config.h"
30 #include "lsst/afw/table/Schema.h"
33 
34 namespace lsst { namespace meas { namespace modelfit {
35 
42 public:
43  LSST_CONTROL_FIELD(nSamples, int, "Number of Monte Carlo samples to draw");
44  LSST_CONTROL_FIELD(nUpdateSteps, int, "Number of Expectation-Maximization update iterations");
45  LSST_CONTROL_FIELD(tau1, double, "Damping parameter for E-M update (see Mixture::updateEM)");
46  LSST_CONTROL_FIELD(tau2, double, "Damping parameter for E-M update (see Mixture::updateEM)");
47  LSST_CONTROL_FIELD(
48  targetPerplexity, double,
49  "Minimum value for normalized perplexity after this iteration; if the actual value is less "
50  "than this, this iteration will be repeated up to maxRepeat times until the target is met. "
51  "In addition, if any previous iteration meets this target, this iteration will be skipped."
52  );
53  LSST_CONTROL_FIELD(
54  maxRepeat, int,
55  "Maximum number of times this iteration will be repeated to meet the perplexityTarget"
56  );
57 
59  nSamples(2000), nUpdateSteps(2), tau1(1E-4), tau2(0.5), targetPerplexity(1.0), maxRepeat(0)
60  {}
61 };
62 
71 public:
72 
84  afw::table::Schema & sampleSchema,
87  bool doSaveIterations=false
88  );
89 
90  void run(
91  SamplingObjective const & objective,
92  PTR(Mixture) proposal,
93  afw::table::BaseCatalog & samples
94  ) const override;
95 
97 
99 
100 private:
101  bool _doSaveIterations;
102  PTR(afw::math::Random) _rng;
104  afw::table::Key<Scalar> _weightKey;
105  afw::table::Key<Scalar> _objectiveKey;
106  afw::table::Key<Scalar> _proposalKey;
108  afw::table::Key<int> _iterCtrlKey;
109  afw::table::Key<int> _iterRepeatKey;
110 };
111 
112 }}} // namespace lsst::meas::modelfit
113 
114 #endif // !LSST_MEAS_MODELFIT_AdaptiveImportanceSampler_h_INCLUDED
lsst::meas::modelfit::AdaptiveImportanceSampler
Sampler class that performs Monte Carlo sampling, while iteratively updating the analytic distributio...
Definition: AdaptiveImportanceSampler.h:70
lsst::meas::modelfit::AdaptiveImportanceSampler::computeNormalizedPerplexity
double computeNormalizedPerplexity(afw::table::BaseCatalog const &samples) const
lsst::afw::table::Schema
lsst::meas::modelfit::ImportanceSamplerControl::maxRepeat
int maxRepeat
"Maximum number of times this iteration will be repeated to meet the perplexityTarget" ;
Definition: AdaptiveImportanceSampler.h:56
lsst::meas::modelfit::ImportanceSamplerControl::targetPerplexity
double targetPerplexity
"Minimum value for normalized perplexity after this iteration; if the actual value is less " "than th...
Definition: AdaptiveImportanceSampler.h:52
lsst::meas::modelfit::AdaptiveImportanceSampler::run
void run(SamplingObjective const &objective, boost::shared_ptr< Mixture > proposal, afw::table::BaseCatalog &samples) const override
PTR
#define PTR(...)
lsst::meas::modelfit::Sampler
Definition: Sampler.h:52
lsst::meas::modelfit::ImportanceSamplerControl::tau2
double tau2
"Damping parameter for E-M update (see Mixture::updateEM)" ;
Definition: AdaptiveImportanceSampler.h:46
lsst::meas::modelfit::Mixture
Definition: Mixture.h:128
lsst::afw::table::Key< Scalar >
Schema.h
Mixture.h
std::map
STL class.
lsst
lsst::meas::modelfit::ImportanceSamplerControl::ImportanceSamplerControl
ImportanceSamplerControl()
Definition: AdaptiveImportanceSampler.h:58
lsst::afw::math::Random
lsst::meas::modelfit::ImportanceSamplerControl
Control object for one iteration of adaptive importance sampling.
Definition: AdaptiveImportanceSampler.h:41
lsst::meas::modelfit::AdaptiveImportanceSampler::AdaptiveImportanceSampler
AdaptiveImportanceSampler(afw::table::Schema &sampleSchema, boost::shared_ptr< afw::math::Random > rng, std::map< int, ImportanceSamplerControl > const &ctrls, bool doSaveIterations=false)
Construct a new sampler.
lsst::meas::modelfit::ImportanceSamplerControl::nSamples
int nSamples
"Number of Monte Carlo samples to draw" ;
Definition: AdaptiveImportanceSampler.h:43
lsst::meas::modelfit::ImportanceSamplerControl::nUpdateSteps
int nUpdateSteps
"Number of Expectation-Maximization update iterations" ;
Definition: AdaptiveImportanceSampler.h:44
Sampler.h
lsst::meas::modelfit::AdaptiveImportanceSampler::computeEffectiveSampleSizeFraction
double computeEffectiveSampleSizeFraction(afw::table::BaseCatalog const &samples) const
lsst::meas::modelfit::ImportanceSamplerControl::tau1
double tau1
"Damping parameter for E-M update (see Mixture::updateEM)" ;
Definition: AdaptiveImportanceSampler.h:45
CatalogT< BaseRecord >
lsst::meas::modelfit::SamplingObjective
Definition: Sampler.h:33