Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1# This file is part of daf_butler. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (http://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <http://www.gnu.org/licenses/>. 

21 

22__all__ = ["ObservationDimensionPacker"] 

23 

24from lsst.daf.butler import DataCoordinate, DimensionPacker 

25 

26 

27class ObservationDimensionPacker(DimensionPacker): 

28 """A `DimensionPacker` for visit+detector or exposure+detector, given an 

29 instrument. 

30 """ 

31 

32 def __init__(self, fixed, dimensions): 

33 super().__init__(fixed, dimensions) 

34 self._instrumentName = fixed["instrument"] 

35 if self.dimensions.required.names == set(["instrument", "visit", "detector"]): 

36 self._observationName = "visit" 

37 obsMax = fixed.records["instrument"].visit_max 

38 elif dimensions.required.names == set(["instrument", "exposure", "detector"]): 38 ↛ 42line 38 didn't jump to line 42, because the condition on line 38 was never false

39 self._observationName = "exposure" 

40 obsMax = fixed.records["instrument"].exposure_max 

41 else: 

42 raise ValueError(f"Invalid dimensions for ObservationDimensionPacker: {dimensions.required}") 

43 self._detectorMax = fixed.records["instrument"].detector_max 

44 self._maxBits = (obsMax*self._detectorMax).bit_length() 

45 

46 @property 

47 def maxBits(self): 

48 # Docstring inherited from DimensionPacker.maxBits 

49 return self._maxBits 

50 

51 def _pack(self, dataId): 

52 # Docstring inherited from DimensionPacker._pack 

53 return dataId["detector"] + self._detectorMax*dataId[self._observationName] 

54 

55 def unpack(self, packedId): 

56 # Docstring inherited from DimensionPacker.unpack 

57 observation, detector = divmod(packedId, self._detectorMax) 

58 return DataCoordinate.standardize( 

59 { 

60 "instrument": self._instrumentName, 

61 "detector": detector, 

62 self._observationName: observation, 

63 }, 

64 graph=self.dimensions 

65 )