Coverage for python/lsst/sims/featureScheduler/modelObservatory/model_observatory.py : 8%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1import numpy as np
2from lsst.sims.utils import (_hpid2RaDec, _raDec2Hpid, Site, calcLmstLast,
3 m5_flat_sed, _approx_RaDec2AltAz, _angularSeparation)
4import lsst.sims.skybrightness_pre as sb
5import healpy as hp
6from datetime import datetime
7from lsst.sims.downtimeModel import ScheduledDowntimeData, UnscheduledDowntimeData
8import lsst.sims.downtimeModel as downtimeModel
9from lsst.sims.seeingModel import SeeingData, SeeingModel
10from lsst.sims.cloudModel import CloudData
11from lsst.sims.featureScheduler.features import Conditions
12from lsst.sims.featureScheduler.utils import set_default_nside, approx_altaz2pa
13from lsst.ts.observatory.model import ObservatoryModel, Target
14from astropy.coordinates import EarthLocation
15from astropy.time import Time
16from lsst.sims.almanac import Almanac
17import warnings
18import matplotlib.pylab as plt
19from lsst.ts.observatory.model import ObservatoryState
20from importlib import import_module
22__all__ = ['Model_observatory']
25class ExtendedObservatoryModel(ObservatoryModel):
26 """Add some functionality to ObservatoryModel
27 """
29 def expose(self, target):
30 # Break out the exposure command from observe method
31 visit_time = sum(target.exp_times) + \
32 target.num_exp * self.params.shuttertime + \
33 max(target.num_exp - 1, 0) * self.params.readouttime
34 self.update_state(self.current_state.time + visit_time)
36 def observe_times(self, target):
37 """observe a target, and return the slewtime and visit time for the action
38 Note, slew and expose will update the current_state
39 """
40 t1 = self.current_state.time + 0
41 # Note, this slew assumes there is a readout that needs to be done.
42 self.slew(target)
43 t2 = self.current_state.time + 0
44 self.expose(target)
45 t3 = self.current_state.time + 0
46 if not self.current_state.tracking:
47 ValueError('Telescope model stopped tracking, that seems bad.')
48 slewtime = t2 - t1
49 visitime = t3 - t2
50 return slewtime, visitime
52 # Adding wrap_padding to make azimuth slews more intelligent
53 def get_closest_angle_distance(self, target_rad, current_abs_rad,
54 min_abs_rad=None, max_abs_rad=None,
55 wrap_padding=0.873):
56 """Calculate the closest angular distance including handling \
57 cable wrap if necessary.
59 Parameters
60 ----------
61 target_rad : float
62 The destination angle (radians).
63 current_abs_rad : float
64 The current angle (radians).
65 min_abs_rad : float, optional
66 The minimum constraint angle (radians).
67 max_abs_rad : float, optional
68 The maximum constraint angle (radians).
69 wrap_padding : float (0.873)
70 The amount of padding to use to make sure we don't track into limits (radians).
73 Returns
74 -------
75 tuple(float, float)
76 (accumulated angle in radians, distance angle in radians)
77 """
78 # if there are wrap limits, normalizes the target angle
79 TWOPI = 2 * np.pi
80 if min_abs_rad is not None:
81 norm_target_rad = divmod(target_rad - min_abs_rad, TWOPI)[1] + min_abs_rad
82 if max_abs_rad is not None:
83 # if the target angle is unreachable
84 # then sets an arbitrary value
85 if norm_target_rad > max_abs_rad:
86 norm_target_rad = max(min_abs_rad, norm_target_rad - np.pi)
87 else:
88 norm_target_rad = target_rad
90 # computes the distance clockwise
91 distance_rad = divmod(norm_target_rad - current_abs_rad, TWOPI)[1]
93 # take the counter-clockwise distance if shorter
94 if distance_rad > np.pi:
95 distance_rad = distance_rad - TWOPI
97 # if there are wrap limits
98 if (min_abs_rad is not None) and (max_abs_rad is not None):
99 # compute accumulated angle
100 accum_abs_rad = current_abs_rad + distance_rad
102 # if limits reached chose the other direction
103 if accum_abs_rad > max_abs_rad - wrap_padding:
104 distance_rad = distance_rad - TWOPI
105 if accum_abs_rad < min_abs_rad + wrap_padding:
106 distance_rad = distance_rad + TWOPI
108 # compute final accumulated angle
109 final_abs_rad = current_abs_rad + distance_rad
111 return (final_abs_rad, distance_rad)
113 # Put in wrap padding kwarg so it's not used on camera rotation.
114 def get_closest_state(self, targetposition, istracking=False):
115 """Find the closest observatory state for the given target position.
117 Parameters
118 ----------
119 targetposition : :class:`.ObservatoryPosition`
120 A target position instance.
121 istracking : bool, optional
122 Flag for saying if the observatory is tracking. Default is False.
124 Returns
125 -------
126 :class:`.ObservatoryState`
127 The state that is closest to the current observatory state.
129 Binary schema
130 -------------
131 The binary schema used to determine the state of a proposed target. A
132 value of 1 indicates that is it failing. A value of 0 indicates that the
133 state is passing.
134 ___ ___ ___ ___ ___ ___
135 | | | | | |
136 rot rot az az alt alt
137 max min max min max min
139 For example, if a proposed target exceeds the rotators maximum value,
140 and is below the minimum azimuth we would have a binary value of;
142 0 1 0 1 0 0
144 If the target passed, then no limitations would occur;
146 0 0 0 0 0 0
147 """
148 TWOPI = 2 * np.pi
150 valid_state = True
151 fail_record = self.current_state.fail_record
152 self.current_state.fail_state = 0
154 if targetposition.alt_rad < self.params.telalt_minpos_rad:
155 telalt_rad = self.params.telalt_minpos_rad
156 domalt_rad = self.params.telalt_minpos_rad
157 valid_state = False
159 if "telalt_minpos_rad" in fail_record:
160 fail_record["telalt_minpos_rad"] += 1
161 else:
162 fail_record["telalt_minpos_rad"] = 1
164 self.current_state.fail_state = self.current_state.fail_state | \
165 self.current_state.fail_value_table["altEmin"]
167 elif targetposition.alt_rad > self.params.telalt_maxpos_rad:
168 telalt_rad = self.params.telalt_maxpos_rad
169 domalt_rad = self.params.telalt_maxpos_rad
170 valid_state = False
171 if "telalt_maxpos_rad" in fail_record:
172 fail_record["telalt_maxpos_rad"] += 1
173 else:
174 fail_record["telalt_maxpos_rad"] = 1
176 self.current_state.fail_state = self.current_state.fail_state | \
177 self.current_state.fail_value_table["altEmax"]
179 else:
180 telalt_rad = targetposition.alt_rad
181 domalt_rad = targetposition.alt_rad
183 if istracking:
184 (telaz_rad, delta) = self.get_closest_angle_distance(targetposition.az_rad,
185 self.current_state.telaz_rad)
186 if telaz_rad < self.params.telaz_minpos_rad:
187 telaz_rad = self.params.telaz_minpos_rad
188 valid_state = False
189 if "telaz_minpos_rad" in fail_record:
190 fail_record["telaz_minpos_rad"] += 1
191 else:
192 fail_record["telaz_minpos_rad"] = 1
194 self.current_state.fail_state = self.current_state.fail_state | \
195 self.current_state.fail_value_table["azEmin"]
197 elif telaz_rad > self.params.telaz_maxpos_rad:
198 telaz_rad = self.params.telaz_maxpos_rad
199 valid_state = False
200 if "telaz_maxpos_rad" in fail_record:
201 fail_record["telaz_maxpos_rad"] += 1
202 else:
203 fail_record["telaz_maxpos_rad"] = 1
205 self.current_state.fail_state = self.current_state.fail_state | \
206 self.current_state.fail_value_table["azEmax"]
208 else:
209 (telaz_rad, delta) = self.get_closest_angle_distance(targetposition.az_rad,
210 self.current_state.telaz_rad,
211 self.params.telaz_minpos_rad,
212 self.params.telaz_maxpos_rad)
214 (domaz_rad, delta) = self.get_closest_angle_distance(targetposition.az_rad,
215 self.current_state.domaz_rad)
217 if istracking:
218 (telrot_rad, delta) = self.get_closest_angle_distance(targetposition.rot_rad,
219 self.current_state.telrot_rad,
220 wrap_padding=0.)
221 if telrot_rad < self.params.telrot_minpos_rad:
222 telrot_rad = self.params.telrot_minpos_rad
223 valid_state = False
224 if "telrot_minpos_rad" in fail_record:
225 fail_record["telrot_minpos_rad"] += 1
226 else:
227 fail_record["telrot_minpos_rad"] = 1
229 self.current_state.fail_state = self.current_state.fail_state | \
230 self.current_state.fail_value_table["rotEmin"]
232 elif telrot_rad > self.params.telrot_maxpos_rad:
233 telrot_rad = self.params.telrot_maxpos_rad
234 valid_state = False
235 if "telrot_maxpos_rad" in fail_record:
236 fail_record["telrot_maxpos_rad"] += 1
237 else:
238 fail_record["telrot_maxpos_rad"] = 1
240 self.current_state.fail_state = self.current_state.fail_state | \
241 self.current_state.fail_value_table["rotEmax"]
242 else:
243 # if the target rotator angle is unreachable
244 # then sets an arbitrary value (opposite)
245 norm_rot_rad = divmod(targetposition.rot_rad - self.params.telrot_minpos_rad, TWOPI)[1] \
246 + self.params.telrot_minpos_rad
247 if norm_rot_rad > self.params.telrot_maxpos_rad:
248 targetposition.rot_rad = norm_rot_rad - np.pi
249 (telrot_rad, delta) = self.get_closest_angle_distance(targetposition.rot_rad,
250 self.current_state.telrot_rad,
251 self.params.telrot_minpos_rad,
252 self.params.telrot_maxpos_rad,
253 wrap_padding=0.)
254 targetposition.ang_rad = divmod(targetposition.pa_rad - telrot_rad, TWOPI)[1]
256 targetstate = ObservatoryState()
257 targetstate.set_position(targetposition)
258 targetstate.telalt_rad = telalt_rad
259 targetstate.telaz_rad = telaz_rad
260 targetstate.telrot_rad = telrot_rad
261 targetstate.domalt_rad = domalt_rad
262 targetstate.domaz_rad = domaz_rad
263 if istracking:
264 targetstate.tracking = valid_state
266 self.current_state.fail_record = fail_record
268 return targetstate
271class Model_observatory(object):
272 """A class to generate a realistic telemetry stream for the scheduler
273 """
275 def __init__(self, nside=None, mjd_start=59853.5, seed=42, quickTest=True,
276 alt_min=5., lax_dome=True, cloud_limit=0.3, sim_ToO=None,
277 seeing_db=None):
278 """
279 Parameters
280 ----------
281 nside : int (None)
282 The healpix nside resolution
283 mjd_start : float (59853.5)
284 The MJD to start the observatory up at
285 alt_min : float (5.)
286 The minimum altitude to compute models at (degrees).
287 lax_dome : bool (True)
288 Passed to observatory model. If true, allows dome creep.
289 cloud_limit : float (0.3)
290 The limit to stop taking observations if the cloud model returns something equal or higher
291 sim_ToO : sim_targetoO object (None)
292 If one would like to inject simulated ToOs into the telemetry stream.
293 seeing_db : filename of the seeing data database (None)
294 If one would like to use an alternate seeing database
295 """
297 if nside is None:
298 nside = set_default_nside()
299 self.nside = nside
301 self.cloud_limit = cloud_limit
303 self.alt_min = np.radians(alt_min)
304 self.lax_dome = lax_dome
306 self.mjd_start = mjd_start
308 # Conditions object to update and return on request
309 self.conditions = Conditions(nside=self.nside)
311 self.sim_ToO = sim_ToO
313 # Create an astropy location
314 self.site = Site('LSST')
315 self.location = EarthLocation(lat=self.site.latitude, lon=self.site.longitude,
316 height=self.site.height)
318 # Load up all the models we need
320 mjd_start_time = Time(self.mjd_start, format='mjd')
321 # Downtime
322 self.down_nights = []
323 self.sched_downtime_data = ScheduledDowntimeData(mjd_start_time)
324 self.unsched_downtime_data = UnscheduledDowntimeData(mjd_start_time)
326 sched_downtimes = self.sched_downtime_data()
327 unsched_downtimes = self.unsched_downtime_data()
329 down_starts = []
330 down_ends = []
331 for dt in sched_downtimes:
332 down_starts.append(dt['start'].mjd)
333 down_ends.append(dt['end'].mjd)
334 for dt in unsched_downtimes:
335 down_starts.append(dt['start'].mjd)
336 down_ends.append(dt['end'].mjd)
338 self.downtimes = np.array(list(zip(down_starts, down_ends)), dtype=list(zip(['start', 'end'], [float, float])))
339 self.downtimes.sort(order='start')
341 # Make sure there aren't any overlapping downtimes
342 diff = self.downtimes['start'][1:] - self.downtimes['end'][0:-1]
343 while np.min(diff) < 0:
344 # Should be able to do this wihtout a loop, but this works
345 for i, dt in enumerate(self.downtimes[0:-1]):
346 if self.downtimes['start'][i+1] < dt['end']:
347 new_end = np.max([dt['end'], self.downtimes['end'][i+1]])
348 self.downtimes[i]['end'] = new_end
349 self.downtimes[i+1]['end'] = new_end
351 good = np.where(self.downtimes['end'] - np.roll(self.downtimes['end'], 1) != 0)
352 self.downtimes = self.downtimes[good]
353 diff = self.downtimes['start'][1:] - self.downtimes['end'][0:-1]
355 self.seeing_data = SeeingData(mjd_start_time, seeing_db=seeing_db)
356 self.seeing_model = SeeingModel()
357 self.seeing_indx_dict = {}
358 for i, filtername in enumerate(self.seeing_model.filter_list):
359 self.seeing_indx_dict[filtername] = i
361 self.cloud_data = CloudData(mjd_start_time, offset_year=0)
363 self.sky_model = sb.SkyModelPre(speedLoad=quickTest)
365 self.observatory = ExtendedObservatoryModel()
366 self.observatory.configure_from_module()
367 # Make it so it respects my requested rotator angles
368 self.observatory.params.rotator_followsky = True
370 self.filterlist = ['u', 'g', 'r', 'i', 'z', 'y']
371 self.seeing_FWHMeff = {}
372 for key in self.filterlist:
373 self.seeing_FWHMeff[key] = np.zeros(hp.nside2npix(self.nside), dtype=float)
375 self.almanac = Almanac(mjd_start=mjd_start)
377 # Let's make sure we're at an openable MJD
378 good_mjd = False
379 to_set_mjd = mjd_start
380 while not good_mjd:
381 good_mjd, to_set_mjd = self.check_mjd(to_set_mjd)
382 self.mjd = to_set_mjd
384 self.obsID_counter = 0
386 def get_info(self):
387 """
388 Returns
389 -------
390 Array with model versions that were instantiated
391 """
393 # The things we want to get info on
394 models = {'cloud data': self.cloud_data, 'sky model': self.sky_model,
395 'seeing data': self.seeing_data, 'seeing model': self.seeing_model,
396 'observatory model': self.observatory,
397 'sched downtime data': self.sched_downtime_data,
398 'unched downtime data': self.unsched_downtime_data}
400 result = []
401 for model_name in models:
402 try:
403 module_name = models[model_name].__module__
404 module = import_module(module_name)
405 ver = import_module(module.__package__+'.version')
406 version = ver.__version__
407 fingerprint = ver.__fingerprint__
408 except:
409 version = 'NA'
410 fingerprint = 'NA'
411 result.append([model_name+' version', version])
412 result.append([model_name+' fingerprint', fingerprint])
413 result.append([model_name+' module', models[model_name].__module__])
414 try:
415 info = models[model_name].config_info()
416 for key in info:
417 result.append([key, str(info[key])])
418 except:
419 result.append([model_name, 'no config_info'])
421 return result
423 def return_conditions(self):
424 """
426 Returns
427 -------
428 lsst.sims.featureScheduler.features.conditions object
429 """
431 self.conditions.mjd = self.mjd
433 self.conditions.night = self.night
434 # Current time as astropy time
435 current_time = Time(self.mjd, format='mjd')
437 # Clouds. XXX--just the raw value
438 self.conditions.bulk_cloud = self.cloud_data(current_time)
440 # use conditions object itself to get aprox altitude of each healpx
441 alts = self.conditions.alt
442 azs = self.conditions.az
444 good = np.where(alts > self.alt_min)
446 # Compute the airmass at each heapix
447 airmass = np.zeros(alts.size, dtype=float)
448 airmass.fill(np.nan)
449 airmass[good] = 1./np.cos(np.pi/2. - alts[good])
450 self.conditions.airmass = airmass
452 # reset the seeing
453 for key in self.seeing_FWHMeff:
454 self.seeing_FWHMeff[key].fill(np.nan)
455 # Use the model to get the seeing at this time and airmasses.
456 FWHM_500 = self.seeing_data(current_time)
457 seeing_dict = self.seeing_model(FWHM_500, airmass[good])
458 fwhm_eff = seeing_dict['fwhmEff']
459 for i, key in enumerate(self.seeing_model.filter_list):
460 self.seeing_FWHMeff[key][good] = fwhm_eff[i, :]
461 self.conditions.FWHMeff = self.seeing_FWHMeff
463 # sky brightness
464 self.conditions.skybrightness = self.sky_model.returnMags(self.mjd, airmass_mask=False,
465 planet_mask=False,
466 moon_mask=False, zenith_mask=False)
468 self.conditions.mounted_filters = self.observatory.current_state.mountedfilters
469 self.conditions.current_filter = self.observatory.current_state.filter[0]
471 # Compute the slewtimes
472 slewtimes = np.empty(alts.size, dtype=float)
473 slewtimes.fill(np.nan)
474 slewtimes[good] = self.observatory.get_approximate_slew_delay(alts[good], azs[good],
475 self.observatory.current_state.filter,
476 lax_dome=self.lax_dome)
477 # Mask out anything the slewtime says is out of bounds
478 slewtimes[np.where(slewtimes < 0)] = np.nan
479 self.conditions.slewtime = slewtimes
481 # Let's get the sun and moon
482 sun_moon_info = self.almanac.get_sun_moon_positions(self.mjd)
483 # convert these to scalars
484 for key in sun_moon_info:
485 sun_moon_info[key] = sun_moon_info[key].max()
486 self.conditions.moonPhase = sun_moon_info['moon_phase']
488 self.conditions.moonAlt = sun_moon_info['moon_alt']
489 self.conditions.moonAz = sun_moon_info['moon_az']
490 self.conditions.moonRA = sun_moon_info['moon_RA']
491 self.conditions.moonDec = sun_moon_info['moon_dec']
492 self.conditions.sunAlt = sun_moon_info['sun_alt']
493 self.conditions.sunRA = sun_moon_info['sun_RA']
494 self.conditions.sunDec = sun_moon_info['sun_dec']
496 self.conditions.lmst, last = calcLmstLast(self.mjd, self.site.longitude_rad)
498 self.conditions.telRA = self.observatory.current_state.ra_rad
499 self.conditions.telDec = self.observatory.current_state.dec_rad
500 self.conditions.telAlt = self.observatory.current_state.alt_rad
501 self.conditions.telAz = self.observatory.current_state.az_rad
503 self.conditions.rotTelPos = self.observatory.current_state.rot_rad
505 # Add in the almanac information
506 self.conditions.night = self.night
507 self.conditions.sunset = self.almanac.sunsets['sunset'][self.almanac_indx]
508 self.conditions.sun_n12_setting = self.almanac.sunsets['sun_n12_setting'][self.almanac_indx]
509 self.conditions.sun_n18_setting = self.almanac.sunsets['sun_n18_setting'][self.almanac_indx]
510 self.conditions.sun_n18_rising = self.almanac.sunsets['sun_n18_rising'][self.almanac_indx]
511 self.conditions.sun_n12_rising = self.almanac.sunsets['sun_n12_rising'][self.almanac_indx]
512 self.conditions.sunrise = self.almanac.sunsets['sunrise'][self.almanac_indx]
513 self.conditions.moonrise = self.almanac.sunsets['moonrise'][self.almanac_indx]
514 self.conditions.moonset = self.almanac.sunsets['moonset'][self.almanac_indx]
516 # Planet positions from almanac
517 self.conditions.planet_positions = self.almanac.get_planet_positions(self.mjd)
519 # See if there are any ToOs to include
520 if self.sim_ToO is not None:
521 toos = self.sim_ToO(self.mjd)
522 if toos is not None:
523 self.conditions.targets_of_opportunity = toos
525 return self.conditions
527 @property
528 def mjd(self):
529 return self._mjd
531 @mjd.setter
532 def mjd(self, value):
533 self._mjd = value
534 self.almanac_indx = self.almanac.mjd_indx(value)
535 self.night = self.almanac.sunsets['night'][self.almanac_indx]
537 def observation_add_data(self, observation):
538 """
539 Fill in the metadata for a completed observation
540 """
541 current_time = Time(self.mjd, format='mjd')
543 observation['clouds'] = self.cloud_data(current_time)
544 observation['airmass'] = 1./np.cos(np.pi/2. - observation['alt'])
545 # Seeing
546 fwhm_500 = self.seeing_data(current_time)
547 seeing_dict = self.seeing_model(fwhm_500, observation['airmass'])
548 observation['FWHMeff'] = seeing_dict['fwhmEff'][self.seeing_indx_dict[observation['filter'][0]]]
549 observation['FWHM_geometric'] = seeing_dict['fwhmGeom'][self.seeing_indx_dict[observation['filter'][0]]]
550 observation['FWHM_500'] = fwhm_500
552 observation['night'] = self.night
553 observation['mjd'] = self.mjd
555 hpid = _raDec2Hpid(self.sky_model.nside, observation['RA'], observation['dec'])
556 observation['skybrightness'] = self.sky_model.returnMags(self.mjd,
557 indx=[hpid],
558 extrapolate=True)[observation['filter'][0]]
560 observation['fivesigmadepth'] = m5_flat_sed(observation['filter'][0], observation['skybrightness'],
561 observation['FWHMeff'], observation['exptime'],
562 observation['airmass'])
564 lmst, last = calcLmstLast(self.mjd, self.site.longitude_rad)
565 observation['lmst'] = lmst
567 sun_moon_info = self.almanac.get_sun_moon_positions(self.mjd)
568 observation['sunAlt'] = sun_moon_info['sun_alt']
569 observation['sunAz'] = sun_moon_info['sun_az']
570 observation['sunRA'] = sun_moon_info['sun_RA']
571 observation['sunDec'] = sun_moon_info['sun_dec']
572 observation['moonAlt'] = sun_moon_info['moon_alt']
573 observation['moonAz'] = sun_moon_info['moon_az']
574 observation['moonRA'] = sun_moon_info['moon_RA']
575 observation['moonDec'] = sun_moon_info['moon_dec']
576 observation['moonDist'] = _angularSeparation(observation['RA'], observation['dec'],
577 observation['moonRA'], observation['moonDec'])
578 observation['solarElong'] = _angularSeparation(observation['RA'], observation['dec'],
579 observation['sunRA'], observation['sunDec'])
580 observation['moonPhase'] = sun_moon_info['moon_phase']
582 observation['ID'] = self.obsID_counter
583 self.obsID_counter += 1
585 return observation
587 def check_up(self, mjd):
588 """See if we are in downtime
590 True if telescope is up
591 False if in downtime
592 """
594 result = True
595 indx = np.searchsorted(self.downtimes['start'], mjd, side='right')-1
596 if mjd < self.downtimes['end'][indx]:
597 result = False
598 return result
600 def check_mjd(self, mjd, cloud_skip=20.):
601 """See if an mjd is ok to observe
602 Parameters
603 ----------
604 cloud_skip : float (20)
605 How much time to skip ahead if it's cloudy (minutes)
608 Returns
609 -------
610 bool
612 mdj : float
613 If True, the input mjd. If false, a good mjd to skip forward to.
614 """
615 passed = True
616 new_mjd = mjd + 0
618 # Maybe set this to a while loop to make sure we don't land on another cloudy time?
619 # or just make this an entire recursive call?
620 clouds = self.cloud_data(Time(mjd, format='mjd'))
621 if clouds > self.cloud_limit:
622 passed = False
623 while clouds > self.cloud_limit:
624 new_mjd = new_mjd + cloud_skip/60./24.
625 clouds = self.cloud_data(Time(new_mjd, format='mjd'))
626 alm_indx = np.searchsorted(self.almanac.sunsets['sunset'], mjd) - 1
627 # at the end of the night, advance to the next setting twilight
628 if mjd > self.almanac.sunsets['sun_n12_rising'][alm_indx]:
629 passed = False
630 new_mjd = self.almanac.sunsets['sun_n12_setting'][alm_indx+1]
631 if mjd < self.almanac.sunsets['sun_n12_setting'][alm_indx]:
632 passed = False
633 new_mjd = self.almanac.sunsets['sun_n12_setting'][alm_indx+1]
634 # We're in a down night, advance to next night
635 if not self.check_up(mjd):
636 passed = False
637 new_mjd = self.almanac.sunsets['sun_n12_setting'][alm_indx+1]
638 # recursive call to make sure we skip far enough ahead
639 if not passed:
640 while not passed:
641 passed, new_mjd = self.check_mjd(new_mjd)
642 return False, new_mjd
643 else:
644 return True, mjd
646 def _update_rotSkyPos(self, observation):
647 """If we have an undefined rotSkyPos, try to fill it out.
648 """
649 alt, az = _approx_RaDec2AltAz(observation['RA'], observation['dec'], self.site.latitude_rad,
650 self.site.longitude_rad, self.mjd)
651 obs_pa = approx_altaz2pa(alt, az, self.site.latitude_rad)
652 observation['rotSkyPos'] = (obs_pa + observation['rotTelPos']) % (2*np.pi)
653 observation['rotTelPos'] = 0.
655 return observation
657 def observe(self, observation):
658 """Try to make an observation
660 Returns
661 -------
662 observation : observation object
663 None if there was no observation taken. Completed observation with meta data filled in.
664 new_night : bool
665 Have we started a new night.
666 """
668 start_night = self.night.copy()
670 # Make sure the kinematic model is set to the correct mjd
671 t = Time(self.mjd, format='mjd')
672 self.observatory.update_state(t.unix)
674 if np.isnan(observation['rotSkyPos']):
675 observation = self._update_rotSkyPos(observation)
677 target = Target(band_filter=observation['filter'], ra_rad=observation['RA'],
678 dec_rad=observation['dec'], ang_rad=observation['rotSkyPos'],
679 num_exp=observation['nexp'], exp_times=[observation['exptime']])
680 start_ra = self.observatory.current_state.ra_rad
681 start_dec = self.observatory.current_state.dec_rad
682 slewtime, visittime = self.observatory.observe_times(target)
684 # Check if the mjd after slewtime and visitime is fine:
685 observation_worked, new_mjd = self.check_mjd(self.mjd + (slewtime + visittime)/24./3600.)
686 if observation_worked:
687 observation['visittime'] = visittime
688 observation['slewtime'] = slewtime
689 observation['slewdist'] = _angularSeparation(start_ra, start_dec,
690 self.observatory.current_state.ra_rad,
691 self.observatory.current_state.dec_rad)
692 self.mjd = self.mjd + slewtime/24./3600.
693 # Reach into the observatory model to pull out the relevant data it has calculated
694 # Note, this might be after the observation has been completed.
695 observation['alt'] = self.observatory.current_state.alt_rad
696 observation['az'] = self.observatory.current_state.az_rad
697 observation['pa'] = self.observatory.current_state.pa_rad
698 observation['rotTelPos'] = self.observatory.current_state.rot_rad
699 observation['rotSkyPos'] = self.observatory.current_state.ang_rad
701 # Metadata on observation is after slew and settle, so at start of exposure.
702 result = self.observation_add_data(observation)
703 self.mjd = self.mjd + visittime/24./3600.
704 new_night = False
705 else:
706 result = None
707 self.observatory.park()
708 # Skip to next legitimate mjd
709 self.mjd = new_mjd
710 now_night = self.night
711 if now_night == start_night:
712 new_night = False
713 else:
714 new_night = True
716 return result, new_night