Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

from __future__ import division 

from builtins import object 

import os 

import sqlite3 

import numpy as np 

from astropy.time import Time 

from lsst.utils import getPackageDir 

 

__all__ = ["SeeingData"] 

 

 

class SeeingData(object): 

"""Read the seeing data from disk and return appropriate FWHM_500 value at a given time. 

This is for use in simulations only. Otherwise data would come from the EFD. 

 

Parameters 

---------- 

start_time : astropy.time.Time 

The time of the start of the simulation. 

The seeing database will be assumed to start on Jan 01 of the same year. 

seeing_db : str or None, opt 

The name of the seeing database. 

If None (default), this will use the simsee_pachon_58777_13.db file in the 'data' directory 

of this package. 

Other available seeing databases from sims_seeingModel include: 

seeing.db (the original, less-variable, 3 year seeing database) 

simsee_pachon_58777_13.db (the current default, 10 year, seeing database) 

simsee_pachon_58777_16.db (a similar, but slightly offset, 13 year seeing database) 

For more info on simsee_pachon_58777_*, see https://github.com/lsst/sims_seeingModel/issues/2 

offset_year : float, opt 

Offset into the cloud database by 'offset_year' years. Default 0. 

""" 

def __init__(self, start_time, seeing_db=None, offset_year=0): 

self.seeing_db = seeing_db 

if self.seeing_db is None: 

self.seeing_db = os.path.join(getPackageDir('sims_seeingModel'), 'data', 

'simsee_pachon_58777_13.db') 

 

# Seeing database starts in Jan 01 of the year of the start of the simulation 

year_start = start_time.datetime.year + offset_year 

self.start_time = Time('%d-01-01' % year_start, format='isot', scale='tai') 

 

self.seeing_dates = None 

self.seeing_values = None 

self.read_data() 

 

def __call__(self, time): 

"""Get the FWHM_500 value for the specified time. 

 

Parameters 

---------- 

time : astropy.time.Time 

Time in the simulation for which to find the 'current' zenith seeing values. 

The difference between this time and the start_time, plus the offset, 

will be used to query the seeing database. 

 

Returns 

------- 

float 

The FWHM_500(") closest to the specified time. 

""" 

delta_time = (time - self.start_time).sec 

# Find the date to look for in the time range of the data. 

# Note that data dates should not necessarily start at zero. 

dbdate = delta_time % self.time_range + self.min_time 

idx = np.searchsorted(self.seeing_dates, dbdate) 

# searchsorted ensures that left < date < right 

# but we need to know if date is closer to left or to right 

left = self.seeing_dates[idx - 1] 

right = self.seeing_dates[idx] 

if dbdate - left < right - dbdate: 

idx -= 1 

return self.seeing_values[idx] 

 

def read_data(self): 

"""Read the seeing information from disk. 

 

The default behavior is to use the module stored database. However, an 

alternate database file can be provided. The alternate database file needs to have a 

table called *Seeing* with the following columns: 

 

seeingId 

int : A unique index for each seeing entry. 

s_date 

int : The time (in seconds) from the start of the simulation, for the seeing observation. 

seeing 

float : The FWHM of the atmospheric PSF (in arcseconds) at zenith. 

""" 

with sqlite3.connect(self.seeing_db) as conn: 

cur = conn.cursor() 

query = "select s_date, seeing from Seeing order by s_date;" 

cur.execute(query) 

results = np.array(cur.fetchall()) 

self.seeing_dates = np.hsplit(results, 2)[0].flatten() 

self.seeing_values = np.hsplit(results, 2)[1].flatten() 

cur.close() 

# Make sure seeing dates are ordered appropriately (monotonically increasing). 

ordidx = self.seeing_dates.argsort() 

self.seeing_dates = self.seeing_dates[ordidx] 

self.seeing_values = self.seeing_values[ordidx] 

self.min_time = self.seeing_dates[0] 

self.max_time = self.seeing_dates[-1] 

self.time_range = self.max_time - self.min_time 

 

def config_info(self): 

"""Report information about configuration of this data. 

 

Returns 

------- 

OrderedDict 

""" 

config_info = {} 

config_info['Start time for db'] = self.start_time 

config_info['Seeing database'] = self.seeing_db 

return config_info