Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

# This file is part of daf_butler. 

# 

# Developed for the LSST Data Management System. 

# This product includes software developed by the LSST Project 

# (http://www.lsst.org). 

# See the COPYRIGHT file at the top-level directory of this distribution 

# for details of code ownership. 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program. If not, see <http://www.gnu.org/licenses/>. 

 

import os 

import unittest 

from datetime import datetime 

 

from lsst.daf.butler import ButlerConfig, DatasetType, Registry, DataCoordinate, StorageClass, DimensionGraph 

 

 

class QueryBuilderTestCase(unittest.TestCase): 

"""Tests for QueryBuilders. 

""" 

 

def setUp(self): 

self.testDir = os.path.dirname(__file__) 

self.configFile = os.path.join(self.testDir, "config/basic/butler.yaml") 

self.butlerConfig = ButlerConfig(self.configFile) 

self.registry = Registry.fromConfig(self.butlerConfig) 

 

def testInstrumentDimensions(self): 

"""Test queries involving only instrument dimensions, with no joins to 

skymap.""" 

registry = self.registry 

 

# need a bunch of dimensions and datasets for test 

registry.insertDimensionData( 

"instrument", 

dict(name="DummyCam", visit_max=25, exposure_max=300, detector_max=6) 

) 

registry.insertDimensionData( 

"physical_filter", 

dict(instrument="DummyCam", name="dummy_r", abstract_filter="r"), 

dict(instrument="DummyCam", name="dummy_i", abstract_filter="i"), 

) 

registry.insertDimensionData( 

"detector", 

*[dict(instrument="DummyCam", id=i, full_name=str(i)) for i in range(1, 6)] 

) 

registry.insertDimensionData( 

"visit", 

dict(instrument="DummyCam", id=10, name="ten", physical_filter="dummy_i"), 

dict(instrument="DummyCam", id=11, name="eleven", physical_filter="dummy_r"), 

dict(instrument="DummyCam", id=20, name="twelve", physical_filter="dummy_r"), 

) 

registry.insertDimensionData( 

"exposure", 

dict(instrument="DummyCam", id=100, name="100", visit=10, physical_filter="dummy_i"), 

dict(instrument="DummyCam", id=101, name="101", visit=10, physical_filter="dummy_i"), 

dict(instrument="DummyCam", id=110, name="110", visit=11, physical_filter="dummy_r"), 

dict(instrument="DummyCam", id=111, name="111", visit=11, physical_filter="dummy_r"), 

dict(instrument="DummyCam", id=200, name="200", visit=20, physical_filter="dummy_r"), 

dict(instrument="DummyCam", id=201, name="201", visit=20, physical_filter="dummy_r"), 

) 

# dataset types 

collection1 = "test" 

collection2 = "test2" 

run = registry.makeRun(collection=collection1) 

run2 = registry.makeRun(collection=collection2) 

storageClass = StorageClass("testDataset") 

registry.storageClasses.registerStorageClass(storageClass) 

rawType = DatasetType(name="RAW", 

dimensions=registry.dimensions.extract(("instrument", "exposure", "detector")), 

storageClass=storageClass) 

registry.registerDatasetType(rawType) 

calexpType = DatasetType(name="CALEXP", 

dimensions=registry.dimensions.extract(("instrument", "visit", "detector")), 

storageClass=storageClass) 

registry.registerDatasetType(calexpType) 

 

# add pre-existing datasets 

for exposure in (100, 101, 110, 111): 

for detector in (1, 2, 3): 

# note that only 3 of 5 detectors have datasets 

dataId = dict(instrument="DummyCam", exposure=exposure, detector=detector) 

ref = registry.addDataset(rawType, dataId=dataId, run=run) 

# exposures 100 and 101 appear in both collections, 100 has 

# different dataset_id in different collections, for 101 only 

# single dataset_id exists 

if exposure == 100: 

registry.addDataset(rawType, dataId=dataId, run=run2) 

if exposure == 101: 

registry.associate(run2.collection, [ref]) 

# Add pre-existing datasets to second collection. 

for exposure in (200, 201): 

for detector in (3, 4, 5): 

# note that only 3 of 5 detectors have datasets 

dataId = dict(instrument="DummyCam", exposure=exposure, detector=detector) 

registry.addDataset(rawType, dataId=dataId, run=run2) 

 

dimensions = DimensionGraph( 

registry.dimensions, 

dimensions=(rawType.dimensions.required | calexpType.dimensions.required) 

) 

# Test that single dim string works as well as list of str 

rows = list(registry.queryDimensions("visit", datasets={rawType: [collection1]}, expand=True)) 

rowsI = list(registry.queryDimensions(["visit"], datasets={rawType: [collection1]}, expand=True)) 

self.assertEqual(rows, rowsI) 

# with empty expression 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1]}, expand=True)) 

self.assertEqual(len(rows), 4*3) # 4 exposures times 3 detectors 

for dataId in rows: 

self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure")) 

packer1 = registry.dimensions.makePacker("visit_detector", dataId) 

packer2 = registry.dimensions.makePacker("exposure_detector", dataId) 

self.assertEqual(packer1.unpack(packer1.pack(dataId)), 

DataCoordinate.standardize(dataId, graph=packer1.dimensions)) 

self.assertEqual(packer2.unpack(packer2.pack(dataId)), 

DataCoordinate.standardize(dataId, graph=packer2.dimensions)) 

self.assertNotEqual(packer1.pack(dataId), packer2.pack(dataId)) 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), 

(100, 101, 110, 111)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 11)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3)) 

 

# second collection 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection2]})) 

self.assertEqual(len(rows), 4*3) # 4 exposures times 3 detectors 

for dataId in rows: 

self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure")) 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), 

(100, 101, 200, 201)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 20)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3, 4, 5)) 

 

# with two input datasets 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1, collection2]})) 

self.assertEqual(len(set(rows)), 6*3) # 6 exposures times 3 detectors; set needed to de-dupe 

for dataId in rows: 

self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure")) 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), 

(100, 101, 110, 111, 200, 201)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 11, 20)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3, 4, 5)) 

 

# limit to single visit 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1]}, 

where="visit = 10")) 

self.assertEqual(len(rows), 2*3) # 2 exposures times 3 detectors 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10,)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3)) 

 

# more limiting expression, using link names instead of Table.column 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1]}, 

where="visit = 10 and detector > 1")) 

self.assertEqual(len(rows), 2*2) # 2 exposures times 2 detectors 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10,)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (2, 3)) 

 

# expression excludes everything 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1]}, 

where="visit > 1000")) 

self.assertEqual(len(rows), 0) 

 

# Selecting by physical_filter, this is not in the dimensions, but it 

# is a part of the full expression so it should work too. 

rows = list(registry.queryDimensions(dimensions, datasets={rawType: [collection1]}, 

where="physical_filter = 'dummy_r'")) 

self.assertEqual(len(rows), 2*3) # 2 exposures times 3 detectors 

self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (110, 111)) 

self.assertCountEqual(set(dataId["visit"] for dataId in rows), (11,)) 

self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3)) 

 

def testSkyMapDimensions(self): 

"""Tests involving only skymap dimensions, no joins to instrument.""" 

registry = self.registry 

 

# need a bunch of dimensions and datasets for test, we want 

# "abstract_filter" in the test so also have to add physical_filter 

# dimensions 

registry.insertDimensionData( 

"instrument", 

dict(instrument="DummyCam") 

) 

registry.insertDimensionData( 

"physical_filter", 

dict(instrument="DummyCam", name="dummy_r", abstract_filter="r"), 

dict(instrument="DummyCam", name="dummy_i", abstract_filter="i"), 

) 

registry.insertDimensionData( 

"skymap", 

dict(name="DummyMap", hash="sha!".encode("utf8")) 

) 

for tract in range(10): 

registry.insertDimensionData("tract", dict(skymap="DummyMap", id=tract)) 

registry.insertDimensionData( 

"patch", 

*[dict(skymap="DummyMap", tract=tract, id=patch, cell_x=0, cell_y=0) 

for patch in range(10)] 

) 

 

# dataset types 

collection = "test" 

run = registry.makeRun(collection=collection) 

storageClass = StorageClass("testDataset") 

registry.storageClasses.registerStorageClass(storageClass) 

calexpType = DatasetType(name="deepCoadd_calexp", 

dimensions=registry.dimensions.extract(("skymap", "tract", "patch", 

"abstract_filter")), 

storageClass=storageClass) 

registry.registerDatasetType(calexpType) 

mergeType = DatasetType(name="deepCoadd_mergeDet", 

dimensions=registry.dimensions.extract(("skymap", "tract", "patch")), 

storageClass=storageClass) 

registry.registerDatasetType(mergeType) 

measType = DatasetType(name="deepCoadd_meas", 

dimensions=registry.dimensions.extract(("skymap", "tract", "patch", 

"abstract_filter")), 

storageClass=storageClass) 

registry.registerDatasetType(measType) 

 

dimensions = DimensionGraph( 

registry.dimensions, 

dimensions=(calexpType.dimensions.required | mergeType.dimensions.required | 

measType.dimensions.required) 

) 

 

# add pre-existing datasets 

for tract in (1, 3, 5): 

for patch in (2, 4, 6, 7): 

dataId = dict(skymap="DummyMap", tract=tract, patch=patch) 

registry.addDataset(mergeType, dataId=dataId, run=run) 

for aFilter in ("i", "r"): 

dataId = dict(skymap="DummyMap", tract=tract, patch=patch, abstract_filter=aFilter) 

registry.addDataset(calexpType, dataId=dataId, run=run) 

 

# with empty expression 

rows = list(registry.queryDimensions(dimensions, 

datasets={calexpType: [collection], mergeType: [collection]})) 

self.assertEqual(len(rows), 3*4*2) # 4 tracts x 4 patches x 2 filters 

for dataId in rows: 

self.assertCountEqual(dataId.keys(), ("skymap", "tract", "patch", "abstract_filter")) 

self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 3, 5)) 

self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 4, 6, 7)) 

self.assertCountEqual(set(dataId["abstract_filter"] for dataId in rows), ("i", "r")) 

 

# limit to 2 tracts and 2 patches 

rows = list(registry.queryDimensions(dimensions, 

datasets={calexpType: [collection], mergeType: [collection]}, 

where="tract IN (1, 5) AND patch IN (2, 7)")) 

self.assertEqual(len(rows), 2*2*2) # 2 tracts x 2 patches x 2 filters 

self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 5)) 

self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 7)) 

self.assertCountEqual(set(dataId["abstract_filter"] for dataId in rows), ("i", "r")) 

 

# limit to single filter 

rows = list(registry.queryDimensions(dimensions, 

datasets={calexpType: [collection], mergeType: [collection]}, 

where="abstract_filter = 'i'")) 

self.assertEqual(len(rows), 3*4*1) # 4 tracts x 4 patches x 2 filters 

self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 3, 5)) 

self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 4, 6, 7)) 

self.assertCountEqual(set(dataId["abstract_filter"] for dataId in rows), ("i",)) 

 

# expression excludes everything, specifying non-existing skymap is 

# not a fatal error, it's operator error 

rows = list(registry.queryDimensions(dimensions, 

datasets={calexpType: [collection], mergeType: [collection]}, 

where="skymap = 'Mars'")) 

self.assertEqual(len(rows), 0) 

 

def testSpatialMatch(self): 

"""Test involving spatial match using join tables. 

 

Note that realistic test needs a reasonably-defined skypix and regions 

in registry tables which is hard to implement in this simple test. 

So we do not actually fill registry with any data and all queries will 

return empty result, but this is still useful for coverage of the code 

that generates query. 

""" 

registry = self.registry 

 

# dataset types 

collection = "test" 

registry.makeRun(collection=collection) 

storageClass = StorageClass("testDataset") 

registry.storageClasses.registerStorageClass(storageClass) 

 

calexpType = DatasetType(name="CALEXP", 

dimensions=registry.dimensions.extract(("instrument", "visit", "detector")), 

storageClass=storageClass) 

registry.registerDatasetType(calexpType) 

 

coaddType = DatasetType(name="deepCoadd_calexp", 

dimensions=registry.dimensions.extract(("skymap", "tract", "patch", 

"abstract_filter")), 

storageClass=storageClass) 

registry.registerDatasetType(coaddType) 

 

dimensions = DimensionGraph( 

registry.dimensions, 

dimensions=(calexpType.dimensions.required | coaddType.dimensions.required) 

) 

 

# without data this should run OK but return empty set 

rows = list(registry.queryDimensions(dimensions, datasets={calexpType: [collection]})) 

self.assertEqual(len(rows), 0) 

 

def testCalibrationLabelIndirection(self): 

"""Test that we can look up datasets with calibration_label dimensions 

from a data ID with exposure dimensions. 

""" 

registry = self.registry 

 

flat = DatasetType( 

"flat", 

self.registry.dimensions.extract( 

["instrument", "detector", "physical_filter", "calibration_label"] 

), 

"ImageU" 

) 

registry.registerDatasetType(flat) 

registry.insertDimensionData("instrument", dict(name="DummyCam")) 

registry.insertDimensionData( 

"physical_filter", 

dict(instrument="DummyCam", name="dummy_i", abstract_filter="i"), 

) 

registry.insertDimensionData( 

"detector", 

*[dict(instrument="DummyCam", id=i, full_name=str(i)) for i in (1, 2, 3, 4, 5)] 

) 

registry.insertDimensionData( 

"visit", 

dict(instrument="DummyCam", id=10, name="ten", physical_filter="dummy_i"), 

dict(instrument="DummyCam", id=11, name="eleven", physical_filter="dummy_i"), 

) 

registry.insertDimensionData( 

"exposure", 

dict(instrument="DummyCam", id=100, name="100", visit=10, physical_filter="dummy_i", 

datetime_begin=datetime(2005, 12, 15, 2), datetime_end=datetime(2005, 12, 15, 3)), 

dict(instrument="DummyCam", id=101, name="101", visit=11, physical_filter="dummy_i", 

datetime_begin=datetime(2005, 12, 16, 2), datetime_end=datetime(2005, 12, 16, 3)), 

) 

registry.insertDimensionData( 

"calibration_label", 

dict(instrument="DummyCam", name="first_night", 

datetime_begin=datetime(2005, 12, 15, 1), datetime_end=datetime(2005, 12, 15, 4)), 

dict(instrument="DummyCam", name="second_night", 

datetime_begin=datetime(2005, 12, 16, 1), datetime_end=datetime(2005, 12, 16, 4)), 

dict(instrument="DummyCam", name="both_nights", 

datetime_begin=datetime(2005, 12, 15, 1), datetime_end=datetime(2005, 12, 16, 4)), 

) 

# Different flats for different nights for detectors 1-3 in first 

# collection. 

collection1 = "calibs1" 

run1 = registry.makeRun(collection=collection1) 

for detector in (1, 2, 3): 

registry.addDataset(flat, dict(instrument="DummyCam", calibration_label="first_night", 

physical_filter="dummy_i", detector=detector), 

run=run1) 

registry.addDataset(flat, dict(instrument="DummyCam", calibration_label="second_night", 

physical_filter="dummy_i", detector=detector), 

run=run1) 

# The same flat for both nights for detectors 3-5 (so detector 3 has 

# multiple valid flats) in second collection. 

collection2 = "calib2" 

run2 = registry.makeRun(collection=collection2) 

for detector in (3, 4, 5): 

registry.addDataset(flat, dict(instrument="DummyCam", calibration_label="both_nights", 

physical_filter="dummy_i", detector=detector), 

run=run2) 

# Perform queries for individual exposure+detector combinations, which 

# should always return exactly one flat. 

for exposure in (100, 101): 

for detector in (1, 2, 3): 

with self.subTest(exposure=exposure, detector=detector): 

rows = registry.queryDatasets("flat", collections=[collection1], 

instrument="DummyCam", 

exposure=exposure, 

detector=detector) 

self.assertEqual(len(list(rows)), 1) 

for detector in (3, 4, 5): 

with self.subTest(exposure=exposure, detector=detector): 

rows = registry.queryDatasets("flat", collections=[collection2], 

instrument="DummyCam", 

exposure=exposure, 

detector=detector) 

self.assertEqual(len(list(rows)), 1) 

for detector in (1, 2, 4, 5): 

with self.subTest(exposure=exposure, detector=detector): 

rows = registry.queryDatasets("flat", collections=[collection1, collection2], 

instrument="DummyCam", 

exposure=exposure, 

detector=detector) 

self.assertEqual(len(list(rows)), 1) 

for detector in (3,): 

with self.subTest(exposure=exposure, detector=detector): 

rows = registry.queryDatasets("flat", collections=[collection1, collection2], 

instrument="DummyCam", 

exposure=exposure, 

detector=detector) 

self.assertEqual(len(list(rows)), 2) 

 

 

415 ↛ 416line 415 didn't jump to line 416, because the condition on line 415 was never trueif __name__ == "__main__": 

unittest.main()