|
lsst.meas.modelfit
18.1.0-3-g8f4a2b1+33
|
Classes | |
| class | SemiEmpiricalPrior |
| class | SoftenedLinearPrior |
Functions | |
| def | fitMixture (data, nComponents, minFactor=0.25, maxFactor=4.0, nIterations=20, df=float("inf")) |
Variables | |
| SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl) | |
| SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl) | |
| def lsst.meas.modelfit.priors.priorsContinued.fitMixture | ( | data, | |
| nComponents, | |||
minFactor = 0.25, |
|||
maxFactor = 4.0, |
|||
nIterations = 20, |
|||
df = float("inf") |
|||
| ) |
Fit a ``Mixture`` distribution to a set of (e1, e2, r) data points,
returing a ``MixturePrior`` object.
Parameters
----------
data : numpy.ndarray
array of data points to fit; shape=(N,3)
nComponents : int
number of components in the mixture distribution
minFactor : float
ellipticity variance of the smallest component in the initial mixture,
relative to the measured variance
maxFactor : float
ellipticity variance of the largest component in the initial mixture,
relative to the measured variance
nIterations : int
number of expectation-maximization update iterations
df : float
number of degrees of freedom for component Student's T distributions
(inf=Gaussian).
Definition at line 56 of file priorsContinued.py.
| lsst.meas.modelfit.priors.priorsContinued.SemiEmpiricalPriorConfig = makeConfigClass(SemiEmpiricalPriorControl) |
Definition at line 38 of file priorsContinued.py.
| lsst.meas.modelfit.priors.priorsContinued.SoftenedLinearPriorConfig = makeConfigClass(SoftenedLinearPriorControl) |
Definition at line 40 of file priorsContinued.py.
1.8.13