Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

#!/usr/bin/env python 

import math 

import numpy 

 

 

class Dodecahedron: 

"""A dodecahedron 

 

Contains positions of faces and associated vertices 

""" 

 

def __init__(self, withFacesOnPoles=False): 

"""Construct a Dodecahedron 

 

@param[in] withFacesOnPoles: if True center a face on each pole, else put a vertex on each pole 

""" 

self._withFacesOnPoles = bool(withFacesOnPoles) 

 

# Basis cartesian vectors describing the faces of a dodecahedron; the full set of vectors is obtained 

# by choosing both signs of each nonzero component of each vector. 

# The orientation of the resulting dodecahedron, while very convenient 

# for specifying face vectors, is not an orientation we want so it must be rotated. 

g = (1.0 + math.sqrt(5.0)) / 2.0 

faceBases = ( 

(0, 1, g), 

(1, g, 0), 

(g, 0, 1), 

) 

unrotFaceVecList = _computeFullVecList(faceBases) 

unrotVertexVecList = _computeDodecahedronVertices(unrotFaceVecList) 

 

if self._withFacesOnPoles: 

# one face is centered on each pole 

vec0, vec1 = _findClosePair(unrotFaceVecList, 0) 

rotMat = _computeCoordTransform(vec0, vec1) 

else: 

# one vertex is on each pole 

vec0, vec1 = _findClosePair(unrotVertexVecList, 0) 

rotMat = _computeCoordTransform(vec0, vec1, vec1NegativeX=True) 

self.vertexVecList = [numpy.dot(rotMat, unrotVertexVec) for unrotVertexVec in unrotVertexVecList] 

unsortedFaceList = [numpy.dot(rotMat, unrotFaceVec) for unrotFaceVec in unrotFaceVecList] 

self.faceVecList = _sortedVectorList(unsortedFaceList) 

 

def getFaceCtrList(self): 

"""Return a list of face centers 

 

@return a list of face centers (in index order); each a unit vector (numpy array) 

""" 

return self.faceVecList[:] 

 

def getFaceCtr(self, ind): 

"""Return the center of the specified face 

 

@param[in] ind: face index 

@return face center as a unit vector (numpy array) 

""" 

return self.faceVecList[ind][:] 

 

def getVertices(self, ind): 

"""Return the vertices for a given face 

 

@param[in] ind: face index 

@return a list of vertices, each a unit vector (numpy array) 

""" 

faceVec = self.getFaceCtr(ind) 

vertexList, indList = _findCloseList(self.vertexVecList, faceVec) 

 

# sort vertex list about face vector (direction is random) 

sortedVertexList = [vertexList[0]] 

vertexList = list(vertexList[1:]) 

while len(vertexList) != 0: 

nearVertexList, nearInd = _findCloseList(vertexList, sortedVertexList[-1]) 

sortedVertexList.append(nearVertexList[0]) 

vertexList.pop(nearInd[0]) 

return sortedVertexList 

 

def getFaceInd(self, vec): 

"""Return the index of the face containing the cartesian vector 

 

@param[in] vec: cartesian vector (length is ignored) 

@return index of face containing vec 

""" 

return numpy.argmax(numpy.dot(self.faceVecList, vec)) 

 

def getWithFacesOnPoles(self): 

"""Get withFacesOnPoles parameter 

""" 

return self._withFacesOnPoles 

 

 

def computeRotationMatrix(angle, axis): 

"""Return a 3D rotation matrix for rotation by a specified amount around a specified axis 

 

Inputs: 

- angle: amount of rotation (rad) 

- axis: axis of rotation; one of 0, 1 or 2 for x, y or z 

""" 

cosAng = math.cos(angle) 

sinAng = math.sin(angle) 

rotMat = numpy.zeros((3, 3), dtype=float) 

rotMat[axis, axis] = 1 

rotMat[(axis + 1) % 3, (axis + 1) % 3] = cosAng 

rotMat[(axis + 2) % 3, (axis + 1) % 3] = sinAng 

rotMat[(axis + 1) % 3, (axis + 2) % 3] = -sinAng 

rotMat[(axis + 2) % 3, (axis + 2) % 3] = cosAng 

return rotMat 

 

 

def _computeCoordTransform(vec0, vec1, vec1NegativeX=False): 

"""Compute a rotation matrix that puts vec0 along z and vec1 along +x in the xz plane 

 

Inputs: 

- vec0: vector 0 

- vec1: vector 1 

- vec1NegativeX: if True then vec1 is rotated to face negative x 

""" 

# rotate around x by angle of vec0 from z to y 

xAng = math.atan2(vec0[1], vec0[2]) 

xRotMat = computeRotationMatrix(xAng, 0) 

 

# rotate around y by -angle of rotated vec0 from z to x 

vec0RotX = numpy.dot(xRotMat, vec0) 

yAng = -math.atan2(vec0RotX[0], vec0RotX[2]) 

yRotMat = computeRotationMatrix(yAng, 1) 

xyRotMat = numpy.dot(yRotMat, xRotMat) 

 

# rotate around z by -angle of rotated vec1 from +/-x to y 

vec1RotXY = numpy.dot(xyRotMat, vec1) 

xVal = vec1RotXY[0] 

if vec1NegativeX: 

xVal = -xVal 

zAng = -math.atan2(vec1RotXY[1], xVal) 

zRotMat = computeRotationMatrix(zAng, 2) 

xyzRotMat = numpy.dot(zRotMat, xyRotMat) 

return xyzRotMat 

 

 

def _computeDodecahedronVertices(faceVecList): 

"""Given a vector of face positions of a Dodecahedron compute the vertices 

""" 

closeIndSetList = [] 

vertexDict = {} 

for i in range(len(faceVecList)): 

closeIndSet = _findCloseIndexSet(faceVecList, i) 

if len(closeIndSet) != 5: 

raise RuntimeError("Found %s vertices instead of 5 near %s: %s" % 

(len(closeIndSet), faceVecList[i], closeIndSet)) 

closeIndSetList.append(closeIndSet) 

for i, iCloseIndSet in enumerate(closeIndSetList): 

for j in iCloseIndSet: 

jCloseIndSet = closeIndSetList[j] 

sharedCloseIndSet = iCloseIndSet.intersection(jCloseIndSet) 

if len(sharedCloseIndSet) != 2: 

raise RuntimeError("Found %s vertices instead of 2 near %s and %s: %s" % 

(len(sharedCloseIndSet), faceVecList[i], faceVecList[j], 

sharedCloseIndSet)) 

for k in sharedCloseIndSet: 

key = frozenset((i, j, k)) 

if key in vertexDict: 

continue 

vertexVec = faceVecList[i] + faceVecList[j] + faceVecList[k] 

vertexVec /= numpy.sqrt(numpy.sum(vertexVec**2)) 

vertexDict[key] = vertexVec 

return list(vertexDict.values()) 

 

 

def _computeFullVecList(basisSet): 

"""Given a collection of basis vectors, compute all permutations with both signs of all nonzero values 

 

For example: [(0, 1, 2)] -> [(0, 1, 2), (0, -1, 2), (0, 1, -2), (0, -1, -2)] 

""" 

fullSet = [] 

for basisVec in basisSet: 

vecLen = math.sqrt(numpy.sum(numpy.array(basisVec)**2)) 

valueList = [] 

for basisValue in basisVec: 

if basisValue == 0: 

valueList.append((0,)) 

else: 

valueList.append((basisValue, -basisValue)) 

fullSet += list(numpy.array((x, y, z))/vecLen 

for z in valueList[2] 

for y in valueList[1] 

for x in valueList[0] 

) 

return fullSet 

 

 

def _findCloseIndexSet(vecList, ind): 

"""Given a list of cartesian vectors, return a set of indices of those closest to one of them 

 

This is intended for regular grids where distances are quantized 

 

Inputs: 

- vecList: list of cartesian vectors 

- ind: index of vector to be nearest 

""" 

dotProductList = numpy.round(numpy.dot(vecList, vecList[ind]), 2) 

dotProductList[ind] = -9e99 

minDist = numpy.max(dotProductList) 

indList = numpy.arange(len(dotProductList))[dotProductList == minDist] 

return set(indList) 

 

 

def _findCloseList(vecList, vec): 

"""Given a list of cartesian vectors, return all those closest to a specified position 

 

This is intended for regular grids where distances are quantized 

 

Inputs: 

- vecList: list of cartesian vectors 

- vec: vector to be near 

 

@return two items: 

- list of closest vectors 

- list if indices of those vectors 

""" 

dotProductList = numpy.round(numpy.dot(vecList, vec), 2) 

minDist = numpy.max(dotProductList) 

indList = numpy.arange(len(dotProductList))[dotProductList == minDist] 

retList = numpy.take(vecList, indList, 0) 

return retList, indList 

 

 

def _findClosePair(vecList, ind=0): 

"""Given a list of cartesian vectors and an index, return the vector and one of its closest neighbors 

 

Inputs: 

- vecList: list of cartesian vectors 

- ind: index of first vector 

""" 

vec = vecList[ind] 

otherVecList = vecList[0:ind] + vecList[ind+1:] 

ind1 = numpy.argmax(numpy.dot(otherVecList, vec)) 

return vec, otherVecList[ind1] 

 

 

def _sortedVectorList(vecList): 

"""Return a list of cartesian vectors sorted by decreasing latitude and increasing longitude 

""" 

def vecToSort(vec): 

ang = round(math.atan2(vec[1], vec[0]), 2) 

if ang < 0: 

ang += 2.0 * math.pi 

return (-round(vec[2], 1), ang, vec) 

 

decoratedList = [vecToSort(v) for v in vecList] 

decoratedList.sort() 

return [d[2] for d in decoratedList] 

 

 

252 ↛ 253line 252 didn't jump to line 253, because the condition on line 252 was never trueif __name__ == "__main__": 

numpy.set_printoptions(precision=2, suppress=True, linewidth=120) 

 

print("Dodecahedron with vertices on poles") 

vertexDodec = Dodecahedron(withFacesOnPoles=False) 

for i in range(12): 

faceVec = vertexDodec.getFaceCtr(i) 

print("Face %2d: %s" % (i, faceVec))