Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

from builtins import str 

from builtins import zip 

from builtins import range 

import matplotlib 

matplotlib.use("Agg") 

import warnings 

import numpy as np 

import numpy.lib.recfunctions as rfn 

import matplotlib 

matplotlib.use('Agg') 

import itertools 

import unittest 

from lsst.sims.maf.slicers.nDSlicer import NDSlicer 

from lsst.sims.maf.slicers.uniSlicer import UniSlicer 

import lsst.utils.tests 

 

 

def makeDataValues(size=100, min=0., max=1., nd=3, random=-1): 

"""Generate a simple array of numbers, evenly arranged between min/max, in nd dimensions, but (optional) 

random order.""" 

data = [] 

for d in range(nd): 

datavalues = np.arange(0, size, dtype='float') 

datavalues *= (float(max) - float(min)) / (datavalues.max() - datavalues.min()) 

datavalues += min 

if random > 0: 

rng = np.random.RandomState(random) 

randorder = rng.rand(size) 

randind = np.argsort(randorder) 

datavalues = datavalues[randind] 

datavalues = np.array(list(zip(datavalues)), dtype=[('testdata' + '%d' % (d), 'float')]) 

data.append(datavalues) 

data = rfn.merge_arrays(data, flatten=True, usemask=False) 

return data 

 

 

class TestNDSlicerSetup(unittest.TestCase): 

 

def setUp(self): 

self.dvmin = 0 

self.dvmax = 1 

nvalues = 1000 

self.nd = 3 

self.dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=608) 

self.dvlist = self.dv.dtype.names 

 

def testSlicertype(self): 

"""Test instantiation of slicer sets slicer type as expected.""" 

testslicer = NDSlicer(self.dvlist) 

self.assertEqual(testslicer.slicerName, testslicer.__class__.__name__) 

self.assertEqual(testslicer.slicerName, 'NDSlicer') 

 

def testSetupSlicerBins(self): 

"""Test setting up slicer using defined bins.""" 

# Used right bins? 

bins = np.arange(self.dvmin, self.dvmax, 0.1) 

binlist = [] 

for d in range(self.nd): 

binlist.append(bins) 

testslicer = NDSlicer(self.dvlist, binsList=binlist) 

testslicer.setupSlicer(self.dv) 

for d in range(self.nd): 

np.testing.assert_equal(testslicer.bins[d], bins) 

self.assertEqual(testslicer.nslice, (len(bins)-1)**self.nd) 

 

def testSetupSlicerNbins(self): 

"""Test setting up slicer using nbins.""" 

for nvalues in (100, 1000): 

for nbins in (5, 25, 74): 

dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=-1) 

# Right number of bins? 

# expect one more 'bin' to accomodate last right edge, but nbins accounts for this 

testslicer = NDSlicer(self.dvlist, binsList=nbins) 

testslicer.setupSlicer(dv) 

self.assertEqual(testslicer.nslice, nbins**self.nd) 

# Bins of the right size? 

for i in range(self.nd): 

bindiff = np.diff(testslicer.bins[i]) 

expectedbindiff = (self.dvmax - self.dvmin) / float(nbins) 

np.testing.assert_allclose(bindiff, expectedbindiff) 

# Can we use a list of nbins too and get the right number of bins? 

nbinsList = [] 

expectednbins = 1 

for d in range(self.nd): 

nbinsList.append(nbins + d) 

expectednbins *= (nbins + d) 

testslicer = NDSlicer(self.dvlist, binsList=nbinsList) 

testslicer.setupSlicer(dv) 

self.assertEqual(testslicer.nslice, expectednbins) 

 

def testSetupSlicerNbinsZeros(self): 

"""Test handling case of data being single values.""" 

dv = makeDataValues(100, 0, 0, self.nd, random=-1) 

nbins = 10 

testslicer = NDSlicer(self.dvlist, binsList=nbins) 

with warnings.catch_warnings(record=True) as w: 

warnings.simplefilter("always") 

testslicer.setupSlicer(dv) 

self.assertIn('creasing binMax', str(w[-1].message)) 

expectednbins = nbins ** self.nd 

self.assertEqual(testslicer.nslice, expectednbins) 

 

def testSetupSlicerEquivalent(self): 

"""Test setting up slicer using defined bins and nbins is equal where expected.""" 

for nbins in (20, 105): 

testslicer = NDSlicer(self.dvlist, binsList=nbins) 

bins = makeDataValues(nbins+1, self.dvmin, self.dvmax, self.nd, random=-1) 

binsList = [] 

for i in bins.dtype.names: 

binsList.append(bins[i]) 

for nvalues in (100, 10000): 

dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=64432) 

testslicer.setupSlicer(dv) 

for i in range(self.nd): 

np.testing.assert_allclose(testslicer.bins[i], binsList[i]) 

 

 

class TestNDSlicerEqual(unittest.TestCase): 

 

def setUp(self): 

self.dvmin = 0 

self.dvmax = 1 

nvalues = 1000 

self.nd = 3 

self.dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=20367) 

self.dvlist = self.dv.dtype.names 

self.testslicer = NDSlicer(self.dvlist, binsList=100) 

self.testslicer.setupSlicer(self.dv) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testEquivalence(self): 

"""Test equals method.""" 

# Note that two ND slicers will be considered equal if they are both the same kind of 

# slicer AND have the same bins in all dimensions. 

# Set up another slicer to match (same bins, although not the same data). 

dv2 = makeDataValues(100, self.dvmin, self.dvmax, self.nd, random=10029) 

dvlist = dv2.dtype.names 

testslicer2 = NDSlicer(sliceColList=dvlist, binsList=self.testslicer.bins) 

testslicer2.setupSlicer(dv2) 

self.assertEqual(self.testslicer, testslicer2) 

# Set up another slicer that should not match (different bins) 

dv2 = makeDataValues(1000, self.dvmin+1, self.dvmax+1, self.nd, random=209837) 

testslicer2 = NDSlicer(sliceColList=dvlist, binsList=100) 

testslicer2.setupSlicer(dv2) 

self.assertNotEqual(self.testslicer, testslicer2) 

# Set up another slicer that should not match (different dimensions) 

dv2 = makeDataValues(1000, self.dvmin, self.dvmax, self.nd-1, random=50623) 

testslicer2 = NDSlicer(dv2.dtype.names, binsList=100) 

testslicer2.setupSlicer(dv2) 

self.assertNotEqual(self.testslicer, testslicer2) 

# Set up a different kind of slicer that should not match. 

testslicer2 = UniSlicer() 

dv2 = makeDataValues(100, 0, 1, random=22310098) 

testslicer2.setupSlicer(dv2) 

self.assertNotEqual(self.testslicer, testslicer2) 

 

 

class TestNDSlicerIteration(unittest.TestCase): 

 

def setUp(self): 

self.dvmin = 0 

self.dvmax = 1 

nvalues = 1000 

self.nd = 3 

self.dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=11081) 

self.dvlist = self.dv.dtype.names 

nvalues = 1000 

bins = np.arange(self.dvmin, self.dvmax, 0.1) 

binsList = [] 

self.iterlist = [] 

for i in range(self.nd): 

binsList.append(bins) 

# (remember iteration doesn't use the very last bin in 'bins') 

self.iterlist.append(bins[:-1]) 

dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=17) 

self.testslicer = NDSlicer(self.dvlist, binsList=binsList) 

self.testslicer.setupSlicer(dv) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testIteration(self): 

"""Test iteration.""" 

for s, ib in zip(self.testslicer, itertools.product(*self.iterlist)): 

self.assertEqual(s['slicePoint']['binLeft'], ib) 

 

def testGetItem(self): 

"""Test getting indexed binpoint.""" 

for i, s in enumerate(self.testslicer): 

self.assertEqual(self.testslicer[i]['slicePoint']['binLeft'], s['slicePoint']['binLeft']) 

self.assertEqual(self.testslicer[0]['slicePoint']['binLeft'], (0.0, 0.0, 0.0)) 

 

 

class TestNDSlicerSlicing(unittest.TestCase): 

 

def setUp(self): 

self.dvmin = 0 

self.dvmax = 1 

nvalues = 1000 

self.nd = 3 

self.dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=173) 

self.dvlist = self.dv.dtype.names 

self.testslicer = NDSlicer(self.dvlist) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testSlicing(self): 

"""Test slicing.""" 

# Test get error if try to slice before setup. 

self.assertRaises(NotImplementedError, self.testslicer._sliceSimData, 0) 

nbins = 10 

binsize = (self.dvmax - self.dvmin) / (float(nbins)) 

self.testslicer = NDSlicer(self.dvlist, binsList=nbins) 

for nvalues in (1000, 10000): 

dv = makeDataValues(nvalues, self.dvmin, self.dvmax, self.nd, random=1735) 

self.testslicer.setupSlicer(dv) 

sum = 0 

for i, s in enumerate(self.testslicer): 

idxs = s['idxs'] 

dataslice = dv[idxs] 

sum += len(idxs) 

if len(dataslice) > 0: 

for i, dvname, b in zip(list(range(self.nd)), self.dvlist, s['slicePoint']['binLeft']): 

self.assertGreaterEqual((dataslice[dvname].min() - b), 0) 

231 ↛ 234line 231 didn't jump to line 234, because the condition on line 231 was never false if i < self.testslicer.nslice-1: 

self.assertLessEqual((dataslice[dvname].max() - b), binsize) 

else: 

self.assertAlmostEqual((dataslice[dvname].max() - b), binsize) 

self.assertEqual(len(dataslice), nvalues/float(nbins)) 

# and check that every data value was assigned somewhere. 

self.assertEqual(sum, nvalues) 

 

 

class TestMemory(lsst.utils.tests.MemoryTestCase): 

pass 

 

 

def setup_module(module): 

lsst.utils.tests.init() 

 

 

248 ↛ 249line 248 didn't jump to line 249, because the condition on line 248 was never trueif __name__ == "__main__": 

lsst.utils.tests.init() 

unittest.main()