Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

# 

# LSST Data Management System 

# 

# Copyright 2008-2016 AURA/LSST. 

# 

# This product includes software developed by the 

# LSST Project (http://www.lsst.org/). 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the LSST License Statement and 

# the GNU General Public License along with this program. If not, 

# see <https://www.lsstcorp.org/LegalNotices/>. 

# 

import unittest 

import numpy 

 

import lsst.utils.tests 

import lsst.shapelet 

import lsst.afw.geom 

import lsst.afw.image 

import lsst.log 

import lsst.log.utils 

import lsst.meas.modelfit 

import lsst.meas.base 

 

# Set trace to 0-5 to view debug messages. Level 5 enables all traces. 

lsst.log.utils.traceSetAt("meas.modelfit.optimizer.Optimizer", -1) 

lsst.log.utils.traceSetAt("meas.modelfit.optimizer.solveTrustRegion", -1) 

 

 

def makeMultiShapeletCircularGaussian(sigma): 

s = lsst.shapelet.ShapeletFunction(0, lsst.shapelet.HERMITE, sigma) 

s.getCoefficients()[0] = 1.0 / lsst.shapelet.ShapeletFunction.FLUX_FACTOR 

m = lsst.shapelet.MultiShapeletFunction() 

m.addComponent(s) 

return m 

 

 

def computePsfFlux(centroid, exposure): 

schema = lsst.afw.table.SourceTable.makeMinimalSchema() 

pointKey = lsst.afw.table.Point2DKey.addFields(schema, "centroid", "known input centroid", "pixel") 

schema.getAliasMap().set("slot_Centroid", "centroid") 

algorithm = lsst.meas.base.PsfFluxAlgorithm(lsst.meas.base.PsfFluxControl(), "base_PsfFlux", schema) 

table = lsst.afw.table.SourceTable.make(schema) 

record = table.makeRecord() 

record.set(pointKey, centroid) 

algorithm.measure(record, exposure) 

return record.get("base_PsfFlux_instFlux"), record.get("base_PsfFlux_instFluxErr") 

 

 

class CModelTestCase(lsst.utils.tests.TestCase): 

 

def setUp(self): 

# Setup test data: a single point source, initially with no noise. 

numpy.random.seed(500) 

crval = lsst.afw.geom.SpherePoint(45.0, 45.0, lsst.afw.geom.degrees) 

crpix = lsst.afw.geom.Point2D(0.0, 0.0) 

scale = 0.2 * lsst.afw.geom.arcseconds 

cdMatrix = lsst.afw.geom.makeCdMatrix(scale=scale, flipX=True) 

dataWcs = lsst.afw.geom.makeSkyWcs(crpix=crpix, crval=crval, cdMatrix=cdMatrix) 

dataCalib = lsst.afw.image.Calib() 

dataCalib.setFluxMag0(1e12) 

self.xyPosition = lsst.afw.geom.Point2D(1.1, -0.8) 

bbox = lsst.afw.geom.Box2I(lsst.afw.geom.Point2I(-100, -100), lsst.afw.geom.Point2I(100, 100)) 

self.exposure = lsst.afw.image.ExposureF(bbox) 

self.exposure.setWcs(dataWcs) 

self.exposure.setCalib(dataCalib) 

self.trueFlux = 65.0 

self.psfSigma = 2.0 

psf = lsst.afw.detection.GaussianPsf(25, 25, self.psfSigma) 

self.exposure.setPsf(psf) 

psfImage = psf.computeImage(self.xyPosition) 

psfImage.getArray()[:, :] *= self.trueFlux 

psfBBox = psfImage.getBBox(lsst.afw.image.PARENT) 

subImage = lsst.afw.image.ImageF(self.exposure.getMaskedImage().getImage(), psfBBox, 

lsst.afw.image.PARENT) 

subImage.getArray()[:, :] = psfImage.getArray() 

 

def tearDown(self): 

del self.xyPosition 

del self.exposure 

del self.trueFlux 

del self.psfSigma 

 

def testNoNoise(self): 

"""Test that CModelAlgorithm.apply() works when applied to a postage-stamp 

containing only a point source with no noise. 

 

We still have to pretend there is noise (i.e. have nonzero values in 

the variance plane) to allow it to compute a likelihood, though. 

""" 

ctrl = lsst.meas.modelfit.CModelControl() 

ctrl.initial.usePixelWeights = False 

algorithm = lsst.meas.modelfit.CModelAlgorithm(ctrl) 

var = 1E-16 

self.exposure.getMaskedImage().getVariance().getArray()[:, :] = var 

psfImage = self.exposure.getPsf().computeKernelImage(self.xyPosition).getArray() 

expectedFluxErr = var**0.5 * (psfImage**2).sum()**(-0.5) 

result = algorithm.apply( 

self.exposure, makeMultiShapeletCircularGaussian(self.psfSigma), 

self.xyPosition, self.exposure.getPsf().computeShape() 

) 

self.assertFalse(result.initial.flags[result.FAILED]) 

self.assertFloatsAlmostEqual(result.initial.instFlux, self.trueFlux, rtol=0.01) 

self.assertFloatsAlmostEqual(result.initial.instFluxErr, expectedFluxErr, rtol=0.01) 

self.assertLess(result.initial.ellipse.getDeterminantRadius(), 0.2) 

self.assertFalse(result.exp.flags[result.FAILED]) 

self.assertFloatsAlmostEqual(result.exp.instFlux, self.trueFlux, rtol=0.01) 

self.assertFloatsAlmostEqual(result.exp.instFluxErr, expectedFluxErr, rtol=0.01) 

self.assertLess(result.exp.ellipse.getDeterminantRadius(), 0.2) 

self.assertFalse(result.dev.flags[result.FAILED]) 

self.assertFloatsAlmostEqual(result.dev.instFlux, self.trueFlux, rtol=0.01) 

self.assertFloatsAlmostEqual(result.dev.instFluxErr, expectedFluxErr, rtol=0.01) 

self.assertLess(result.dev.ellipse.getDeterminantRadius(), 0.2) 

self.assertFalse(result.flags[result.FAILED]) 

self.assertFloatsAlmostEqual(result.instFlux, self.trueFlux, rtol=0.01) 

 

def testVsPsfFlux(self): 

"""Test that CModel produces results comparable to PsfFlux when run 

on point sources. 

""" 

noiseSigma = 1.0 

for fluxFactor in (1.0, 10.0, 100.0): 

exposure = self.exposure.Factory(self.exposure, True) 

exposure.getMaskedImage().getImage().getArray()[:] *= fluxFactor 

exposure.getMaskedImage().getVariance().getArray()[:] = noiseSigma**2 

exposure.getMaskedImage().getImage().getArray()[:] += \ 

noiseSigma*numpy.random.randn(exposure.getHeight(), exposure.getWidth()) 

ctrl = lsst.meas.modelfit.CModelControl() 

algorithm = lsst.meas.modelfit.CModelAlgorithm(ctrl) 

cmodel = algorithm.apply( 

exposure, makeMultiShapeletCircularGaussian(self.psfSigma), 

self.xyPosition, self.exposure.getPsf().computeShape() 

) 

psfFlux, psfFluxErr = computePsfFlux(self.xyPosition, exposure) 

self.assertFloatsAlmostEqual(psfFlux, cmodel.instFlux, rtol=0.1/fluxFactor**0.5) 

self.assertFloatsAlmostEqual(psfFluxErr, cmodel.instFluxErr, rtol=0.1/fluxFactor**0.5) 

 

 

class TestMemory(lsst.utils.tests.MemoryTestCase): 

pass 

 

 

def setup_module(module): 

lsst.utils.tests.init() 

 

 

157 ↛ 158line 157 didn't jump to line 158, because the condition on line 157 was never trueif __name__ == "__main__": 

lsst.utils.tests.init() 

unittest.main()