Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

# This file is part of daf_butler. 

# 

# Developed for the LSST Data Management System. 

# This product includes software developed by the LSST Project 

# (http://www.lsst.org). 

# See the COPYRIGHT file at the top-level directory of this distribution 

# for details of code ownership. 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program. If not, see <http://www.gnu.org/licenses/>. 

 

from abc import ABCMeta, abstractmethod 

 

from .mappingFactory import MappingFactory 

from .utils import getFullTypeName 

 

__all__ = ("Formatter", "FormatterFactory") 

 

 

class Formatter(metaclass=ABCMeta): 

"""Interface for reading and writing Datasets with a particular 

`StorageClass`. 

""" 

 

unsupportedParameters = frozenset() 

"""Set of parameters not understood by this `Formatter`. An empty set means 

all parameters are supported. `None` indicates that no parameters 

are supported. 

""" 

 

@classmethod 

def name(cls): 

"""Returns the fully qualified name of the formatter. 

""" 

return getFullTypeName(cls) 

 

@abstractmethod 

def read(self, fileDescriptor, component=None): 

"""Read a Dataset. 

 

Parameters 

---------- 

fileDescriptor : `FileDescriptor` 

Identifies the file to read, type to read it into and parameters 

to be used for reading. 

component : `str`, optional 

Component to read from the file. Only used if the `StorageClass` 

for reading differed from the `StorageClass` used to write the 

file. 

 

Returns 

------- 

inMemoryDataset : `InMemoryDataset` 

The requested Dataset. 

""" 

raise NotImplementedError("Type does not support reading") 

 

@abstractmethod 

def write(self, inMemoryDataset, fileDescriptor): 

"""Write a Dataset. 

 

Parameters 

---------- 

inMemoryDataset : `InMemoryDataset` 

The Dataset to store. 

fileDescriptor : `FileDescriptor` 

Identifies the file to write. 

 

Returns 

------- 

path : `str` 

The path to where the Dataset was stored. 

""" 

raise NotImplementedError("Type does not support writing") 

 

@abstractmethod 

def predictPath(self, location): 

"""Return the path that would be returned by write, without actually 

writing. 

 

location : `Location` 

The location to simulate writing to. 

""" 

raise NotImplementedError("Type does not support writing") 

 

def segregateParameters(self, parameters): 

"""Segregate the supplied parameters into those understood by the 

formatter and those not understood by the formatter. 

 

Any unsupported parameters are assumed to be usable by associated 

assemblers. 

 

Parameters 

---------- 

parameters : `dict` 

Parameters with values that have been supplied by the caller 

and which might be relevant for the formatter. 

 

Returns 

------- 

supported : `dict` 

Those parameters supported by this formatter. 

unsupported : `dict` 

Those parameters not supported by this formatter. 

""" 

 

if parameters is None: 

return {}, {} 

 

if self.unsupportedParameters is None: 

# Support none of the parameters 

return {}, parameters.copy() 

 

# Start by assuming all are supported 

supported = parameters.copy() 

unsupported = {} 

 

# And remove any we know are not supported 

for p in set(supported): 

if p in self.unsupportedParameters: 

unsupported[p] = supported.pop(p) 

 

return supported, unsupported 

 

 

class FormatterFactory: 

"""Factory for `Formatter` instances. 

""" 

 

def __init__(self): 

self._mappingFactory = MappingFactory(Formatter) 

 

def getFormatter(self, entity): 

"""Get a new formatter instance. 

 

Parameters 

---------- 

entity : `DatasetRef`, `DatasetType` or `StorageClass`, or `str` 

Entity to use to determine the formatter to return. 

`StorageClass` will be used as a last resort if `DatasetRef` 

or `DatasetType` instance is provided. 

""" 

if isinstance(entity, str): 

names = (entity,) 

else: 

names = entity._lookupNames() 

return self._mappingFactory.getFromRegistry(*names) 

 

def registerFormatter(self, type_, formatter): 

"""Register a `Formatter`. 

 

Parameters 

---------- 

type_ : `str` or `StorageClass` or `DatasetType` 

Type for which this formatter is to be used. 

formatter : `str` 

Identifies a `Formatter` subclass to use for reading and writing 

Datasets of this type. 

 

Raises 

------ 

ValueError 

If formatter does not name a valid formatter type. 

""" 

self._mappingFactory.placeInRegistry(type_, formatter)