Coverage for tests/test_calibrateImage.py: 15%
294 statements
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-20 11:05 +0000
« prev ^ index » next coverage.py v7.4.4, created at 2024-04-20 11:05 +0000
1# This file is part of pipe_tasks.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
22import unittest
23from unittest import mock
24import tempfile
26import astropy.units as u
27from astropy.coordinates import SkyCoord
28import numpy as np
30import lsst.afw.image as afwImage
31import lsst.afw.math as afwMath
32import lsst.afw.table as afwTable
33import lsst.daf.base
34import lsst.daf.butler
35import lsst.daf.butler.tests as butlerTests
36import lsst.geom
37import lsst.meas.algorithms
38from lsst.meas.algorithms import testUtils
39import lsst.meas.extensions.psfex
40import lsst.meas.base
41import lsst.meas.base.tests
42import lsst.pipe.base.testUtils
43from lsst.pipe.tasks.calibrateImage import CalibrateImageTask
44import lsst.utils.tests
47class CalibrateImageTaskTests(lsst.utils.tests.TestCase):
49 def setUp(self):
50 # Different x/y dimensions so they're easy to distinguish in a plot,
51 # and non-zero minimum, to help catch xy0 errors.
52 bbox = lsst.geom.Box2I(lsst.geom.Point2I(5, 4), lsst.geom.Point2I(205, 184))
53 self.sky_center = lsst.geom.SpherePoint(245.0, -45.0, lsst.geom.degrees)
54 self.photo_calib = 12.3
55 dataset = lsst.meas.base.tests.TestDataset(bbox, crval=self.sky_center, calibration=self.photo_calib)
56 # sqrt of area of a normalized 2d gaussian
57 psf_scale = np.sqrt(4*np.pi*(dataset.psfShape.getDeterminantRadius())**2)
58 noise = 10.0 # stddev of noise per pixel
59 # Sources ordered from faintest to brightest.
60 self.fluxes = np.array((6*noise*psf_scale,
61 12*noise*psf_scale,
62 45*noise*psf_scale,
63 150*noise*psf_scale,
64 400*noise*psf_scale,
65 1000*noise*psf_scale))
66 self.centroids = np.array(((162, 22),
67 (40, 70),
68 (100, 160),
69 (50, 120),
70 (92, 35),
71 (175, 154)), dtype=np.float32)
72 for flux, centroid in zip(self.fluxes, self.centroids):
73 dataset.addSource(instFlux=flux, centroid=lsst.geom.Point2D(centroid[0], centroid[1]))
75 # Bright extended source in the center of the image: should not appear
76 # in any of the output catalogs.
77 center = lsst.geom.Point2D(100, 100)
78 shape = lsst.afw.geom.Quadrupole(8, 9, 3)
79 dataset.addSource(instFlux=500*noise*psf_scale, centroid=center, shape=shape)
81 schema = dataset.makeMinimalSchema()
82 self.truth_exposure, self.truth_cat = dataset.realize(noise=noise, schema=schema)
83 # To make it look like a version=1 (nJy fluxes) refcat
84 self.truth_cat = self.truth_exposure.photoCalib.calibrateCatalog(self.truth_cat)
85 self.ref_loader = testUtils.MockReferenceObjectLoaderFromMemory([self.truth_cat])
86 metadata = lsst.daf.base.PropertyList()
87 metadata.set("REFCAT_FORMAT_VERSION", 1)
88 self.truth_cat.setMetadata(metadata)
90 # TODO: a cosmic ray (need to figure out how to insert a fake-CR)
91 # self.truth_exposure.image.array[10, 10] = 100000
92 # self.truth_exposure.variance.array[10, 10] = 100000/noise
94 # Copy the truth exposure, because CalibrateImage modifies the input.
95 # Post-ISR ccds only contain: initial WCS, VisitInfo, filter
96 self.exposure = afwImage.ExposureF(self.truth_exposure.maskedImage)
97 self.exposure.setWcs(self.truth_exposure.wcs)
98 self.exposure.info.setVisitInfo(self.truth_exposure.visitInfo)
99 # "truth" filter, to match the "truth" refcat.
100 self.exposure.setFilter(lsst.afw.image.FilterLabel(physical='truth', band="truth"))
102 # Test-specific configuration:
103 self.config = CalibrateImageTask.ConfigClass()
104 # We don't have many sources, so have to fit simpler models.
105 self.config.psf_detection.background.approxOrderX = 1
106 self.config.star_detection.background.approxOrderX = 1
107 # Only insert 2 sky sources, for simplicity.
108 self.config.star_sky_sources.nSources = 2
109 # Use PCA psf fitter, as psfex fails if there are only 4 stars.
110 self.config.psf_measure_psf.psfDeterminer = 'pca'
111 # We don't have many test points, so can't match on complicated shapes.
112 self.config.astrometry.matcher.numPointsForShape = 3
113 # ApFlux has more noise than PsfFlux (the latter unrealistically small
114 # in this test data), so we need to do magnitude rejection at higher
115 # sigma, otherwise we can lose otherwise good sources.
116 # TODO DM-39203: Once we are using Compensated Gaussian Fluxes, we
117 # will use those fluxes here, and hopefully can remove this.
118 self.config.astrometry.magnitudeOutlierRejectionNSigma = 9.0
120 # Make a realistic id generator so that output catalog ids are useful.
121 # NOTE: The id generator is used to seed the noise replacer during
122 # measurement, so changes to values here can have subtle effects on
123 # the centroids and fluxes mesaured on the image, which might cause
124 # tests to fail.
125 data_id = lsst.daf.butler.DataCoordinate.standardize(
126 instrument="I",
127 visit=self.truth_exposure.visitInfo.id,
128 detector=12,
129 universe=lsst.daf.butler.DimensionUniverse(),
130 )
131 self.config.id_generator.packer.name = "observation"
132 self.config.id_generator.packer["observation"].n_observations = 10000
133 self.config.id_generator.packer["observation"].n_detectors = 99
134 self.config.id_generator.n_releases = 8
135 self.config.id_generator.release_id = 2
136 self.id_generator = self.config.id_generator.apply(data_id)
138 # Something about this test dataset prefers a larger threshold here.
139 self.config.star_selector["science"].unresolved.maximum = 0.2
141 def _check_run(self, calibrate, result):
142 """Test the result of CalibrateImage.run().
144 Parameters
145 ----------
146 calibrate : `lsst.pipe.tasks.calibrateImage.CalibrateImageTask`
147 Configured task that had `run` called on it.
148 result : `lsst.pipe.base.Struct`
149 Result of calling calibrate.run().
150 """
151 # Background should have 4 elements: 3 from compute_psf and one from
152 # re-estimation during source detection.
153 self.assertEqual(len(result.background), 4)
155 # Both afw and astropy psf_stars catalogs should be populated.
156 self.assertEqual(result.psf_stars["calib_psf_used"].sum(), 3)
157 self.assertEqual(result.psf_stars_footprints["calib_psf_used"].sum(), 3)
159 # Check that the summary statistics are reasonable.
160 summary = result.exposure.info.getSummaryStats()
161 self.assertFloatsAlmostEqual(summary.psfSigma, 2.0, rtol=1e-2)
162 self.assertFloatsAlmostEqual(summary.ra, self.sky_center.getRa().asDegrees(), rtol=1e-7)
163 self.assertFloatsAlmostEqual(summary.dec, self.sky_center.getDec().asDegrees(), rtol=1e-7)
165 # Should have finite sky coordinates in the afw and astropy catalogs.
166 self.assertTrue(np.isfinite(result.stars_footprints["coord_ra"]).all())
167 self.assertTrue(np.isfinite(result.stars["coord_ra"]).all())
169 # Returned photoCalib should be the applied value, not the ==1 one on the exposure.
170 self.assertFloatsAlmostEqual(result.applied_photo_calib.getCalibrationMean(),
171 self.photo_calib, rtol=2e-3)
172 # Should have calibrated flux/magnitudes in the afw and astropy catalogs
173 self.assertIn("slot_PsfFlux_flux", result.stars_footprints.schema)
174 self.assertIn("slot_PsfFlux_mag", result.stars_footprints.schema)
175 self.assertEqual(result.stars["slot_PsfFlux_flux"].unit, u.nJy)
176 self.assertEqual(result.stars["slot_PsfFlux_mag"].unit, u.ABmag)
178 # Should have detected all S/N >= 10 sources plus 2 sky sources, whether 1 or 2 snaps.
179 self.assertEqual(len(result.stars), 7)
180 # Did the psf flags get propagated from the psf_stars catalog?
181 self.assertEqual(result.stars["calib_psf_used"].sum(), 3)
183 # Check that all necessary fields are in the output.
184 lsst.pipe.base.testUtils.assertValidOutput(calibrate, result)
186 def test_run(self):
187 """Test that run() returns reasonable values to be butler put.
188 """
189 calibrate = CalibrateImageTask(config=self.config)
190 calibrate.astrometry.setRefObjLoader(self.ref_loader)
191 calibrate.photometry.match.setRefObjLoader(self.ref_loader)
192 result = calibrate.run(exposures=self.exposure)
194 self._check_run(calibrate, result)
196 def test_run_2_snaps(self):
197 """Test that run() returns reasonable values to be butler put, when
198 passed two exposures to combine as snaps.
199 """
200 calibrate = CalibrateImageTask(config=self.config)
201 calibrate.astrometry.setRefObjLoader(self.ref_loader)
202 calibrate.photometry.match.setRefObjLoader(self.ref_loader)
203 # Halve the flux in each exposure to get the expected visit sum.
204 self.exposure.image /= 2
205 self.exposure.variance /= 2
206 result = calibrate.run(exposures=[self.exposure, self.exposure])
208 self._check_run(calibrate, result)
210 def test_handle_snaps(self):
211 calibrate = CalibrateImageTask(config=self.config)
212 self.assertEqual(calibrate._handle_snaps(self.exposure), self.exposure)
213 self.assertEqual(calibrate._handle_snaps((self.exposure, )), self.exposure)
214 self.assertEqual(calibrate._handle_snaps(self.exposure), self.exposure)
215 with self.assertRaisesRegex(RuntimeError, "Can only process 1 or 2 snaps, not 0."):
216 calibrate._handle_snaps([])
217 with self.assertRaisesRegex(RuntimeError, "Can only process 1 or 2 snaps, not 3."):
218 calibrate._handle_snaps(3*[self.exposure])
220 def test_compute_psf(self):
221 """Test that our brightest sources are found by _compute_psf(),
222 that a PSF is assigned to the expopsure.
223 """
224 calibrate = CalibrateImageTask(config=self.config)
225 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
227 # Catalog ids should be very large from this id generator.
228 self.assertTrue(all(psf_stars['id'] > 1000000000))
230 # Background should have 3 elements: initial subtraction, and two from
231 # re-estimation during the two detection passes.
232 self.assertEqual(len(background), 3)
234 # Only the point-sources with S/N > 50 should be in this output.
235 self.assertEqual(psf_stars["calib_psf_used"].sum(), 3)
236 # Sort in order of brightness, to easily compare with expected positions.
237 psf_stars.sort(psf_stars.getPsfFluxSlot().getMeasKey())
238 for record, flux, center in zip(psf_stars[::-1], self.fluxes, self.centroids[self.fluxes > 50]):
239 self.assertFloatsAlmostEqual(record.getX(), center[0], rtol=0.01)
240 self.assertFloatsAlmostEqual(record.getY(), center[1], rtol=0.01)
241 # PsfFlux should match the values inserted.
242 self.assertFloatsAlmostEqual(record["slot_PsfFlux_instFlux"], flux, rtol=0.01)
244 # TODO: While debugging DM-32701, we're using PCA instead of psfex.
245 # Check that we got a useable PSF.
246 # self.assertIsInstance(self.exposure.psf, lsst.meas.extensions.psfex.PsfexPsf)
247 self.assertIsInstance(self.exposure.psf, lsst.meas.algorithms.PcaPsf)
248 # TestDataset sources have PSF radius=2 pixels.
249 radius = self.exposure.psf.computeShape(self.exposure.psf.getAveragePosition()).getDeterminantRadius()
250 self.assertFloatsAlmostEqual(radius, 2.0, rtol=1e-2)
252 # To look at images for debugging (`setup display_ds9` and run ds9):
253 # import lsst.afw.display
254 # display = lsst.afw.display.getDisplay()
255 # display.mtv(self.exposure)
257 def test_measure_aperture_correction(self):
258 """Test that _measure_aperture_correction() assigns an ApCorrMap to the
259 exposure.
260 """
261 calibrate = CalibrateImageTask(config=self.config)
262 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
264 # First check that the exposure doesn't have an ApCorrMap.
265 self.assertIsNone(self.exposure.apCorrMap)
266 calibrate._measure_aperture_correction(self.exposure, psf_stars)
267 self.assertIsInstance(self.exposure.apCorrMap, afwImage.ApCorrMap)
269 def test_find_stars(self):
270 """Test that _find_stars() correctly identifies the S/N>10 stars
271 in the image and returns them in the output catalog.
272 """
273 calibrate = CalibrateImageTask(config=self.config)
274 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
275 calibrate._measure_aperture_correction(self.exposure, psf_stars)
277 stars = calibrate._find_stars(self.exposure, background, self.id_generator)
279 # Catalog ids should be very large from this id generator.
280 self.assertTrue(all(stars['id'] > 1000000000))
282 # Background should have 4 elements: 3 from compute_psf and one from
283 # re-estimation during source detection.
284 self.assertEqual(len(background), 4)
286 # Only 5 psf-like sources with S/N>10 should be in the output catalog,
287 # plus two sky sources.
288 self.assertEqual(len(stars), 7)
289 self.assertTrue(stars.isContiguous())
290 # Sort in order of brightness, to easily compare with expected positions.
291 stars.sort(stars.getPsfFluxSlot().getMeasKey())
292 for record, flux, center in zip(stars[::-1], self.fluxes, self.centroids[self.fluxes > 50]):
293 self.assertFloatsAlmostEqual(record.getX(), center[0], rtol=0.01)
294 self.assertFloatsAlmostEqual(record.getY(), center[1], rtol=0.01)
295 self.assertFloatsAlmostEqual(record["slot_PsfFlux_instFlux"], flux, rtol=0.01)
297 def test_astrometry(self):
298 """Test that the fitted WCS gives good catalog coordinates.
299 """
300 calibrate = CalibrateImageTask(config=self.config)
301 calibrate.astrometry.setRefObjLoader(self.ref_loader)
302 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
303 calibrate._measure_aperture_correction(self.exposure, psf_stars)
304 stars = calibrate._find_stars(self.exposure, background, self.id_generator)
306 calibrate._fit_astrometry(self.exposure, stars)
308 # Check that we got reliable matches with the truth coordinates.
309 sky = stars["sky_source"]
310 fitted = SkyCoord(stars[~sky]['coord_ra'], stars[~sky]['coord_dec'], unit="radian")
311 truth = SkyCoord(self.truth_cat['coord_ra'], self.truth_cat['coord_dec'], unit="radian")
312 idx, d2d, _ = fitted.match_to_catalog_sky(truth)
313 np.testing.assert_array_less(d2d.to_value(u.milliarcsecond), 35.0)
315 def test_photometry(self):
316 """Test that the fitted photoCalib matches the one we generated,
317 and that the exposure is calibrated.
318 """
319 calibrate = CalibrateImageTask(config=self.config)
320 calibrate.astrometry.setRefObjLoader(self.ref_loader)
321 calibrate.photometry.match.setRefObjLoader(self.ref_loader)
322 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
323 calibrate._measure_aperture_correction(self.exposure, psf_stars)
324 stars = calibrate._find_stars(self.exposure, background, self.id_generator)
325 calibrate._fit_astrometry(self.exposure, stars)
327 stars, matches, meta, photoCalib = calibrate._fit_photometry(self.exposure, stars)
329 # NOTE: With this test data, PhotoCalTask returns calibrationErr==0,
330 # so we can't check that the photoCal error has been set.
331 self.assertFloatsAlmostEqual(photoCalib.getCalibrationMean(), self.photo_calib, rtol=2e-3)
332 # The exposure should be calibrated by the applied photoCalib.
333 self.assertFloatsAlmostEqual(self.exposure.image.array/self.truth_exposure.image.array,
334 self.photo_calib, rtol=2e-3)
335 # PhotoCalib on the exposure must be identically 1.
336 self.assertEqual(self.exposure.photoCalib.getCalibrationMean(), 1.0)
338 # Check that we got reliable magnitudes and fluxes vs. truth, ignoring
339 # sky sources.
340 sky = stars["sky_source"]
341 fitted = SkyCoord(stars[~sky]['coord_ra'], stars[~sky]['coord_dec'], unit="radian")
342 truth = SkyCoord(self.truth_cat['coord_ra'], self.truth_cat['coord_dec'], unit="radian")
343 idx, _, _ = fitted.match_to_catalog_sky(truth)
344 # Because the input variance image does not include contributions from
345 # the sources, we can't use fluxErr as a bound on the measurement
346 # quality here.
347 self.assertFloatsAlmostEqual(stars[~sky]['slot_PsfFlux_flux'],
348 self.truth_cat['truth_flux'][idx],
349 rtol=0.1)
350 self.assertFloatsAlmostEqual(stars[~sky]['slot_PsfFlux_mag'],
351 self.truth_cat['truth_mag'][idx],
352 rtol=0.01)
354 def test_match_psf_stars(self):
355 """Test that _match_psf_stars() flags the correct stars as psf stars
356 and candidates.
357 """
358 calibrate = CalibrateImageTask(config=self.config)
359 psf_stars, background, candidates = calibrate._compute_psf(self.exposure, self.id_generator)
360 calibrate._measure_aperture_correction(self.exposure, psf_stars)
361 stars = calibrate._find_stars(self.exposure, background, self.id_generator)
363 # There should be no psf-related flags set at first.
364 self.assertEqual(stars["calib_psf_candidate"].sum(), 0)
365 self.assertEqual(stars["calib_psf_used"].sum(), 0)
366 self.assertEqual(stars["calib_psf_reserved"].sum(), 0)
368 # Reorder stars to be out of order with psf_stars (putting the sky
369 # sources in front); this tests that I get the indexing right.
370 stars.sort(stars.getCentroidSlot().getMeasKey().getX())
371 stars = stars.copy(deep=True)
372 # Re-number the ids: the matcher requires sorted ids: this is always
373 # true in the code itself, but we've permuted them by sorting on
374 # flux. We don't care what the actual ids themselves are here.
375 stars["id"] = np.arange(len(stars))
377 calibrate._match_psf_stars(psf_stars, stars)
379 # Check that the three brightest stars have the psf flags transfered
380 # from the psf_stars catalog by sorting in order of brightness.
381 stars.sort(stars.getPsfFluxSlot().getMeasKey())
382 # sort() above leaves the catalog non-contiguous.
383 stars = stars.copy(deep=True)
384 np.testing.assert_array_equal(stars["calib_psf_candidate"],
385 [False, False, False, False, True, True, True])
386 np.testing.assert_array_equal(stars["calib_psf_used"], [False, False, False, False, True, True, True])
387 # Too few sources to reserve any in these tests.
388 self.assertEqual(stars["calib_psf_reserved"].sum(), 0)
390 def test_match_psf_stars_no_matches(self):
391 """Check that _match_psf_stars handles the case of no cross-matches.
392 """
393 calibrate = CalibrateImageTask(config=self.config)
394 # Make two catalogs that cannot have matches.
395 stars = self.truth_cat[2:].copy(deep=True)
396 psf_stars = self.truth_cat[:2].copy(deep=True)
398 with self.assertRaisesRegex(RuntimeError, "0 psf_stars out of 2 matched"):
399 calibrate._match_psf_stars(psf_stars, stars)
402class CalibrateImageTaskRunQuantumTests(lsst.utils.tests.TestCase):
403 """Tests of ``CalibrateImageTask.runQuantum``, which need a test butler,
404 but do not need real images.
405 """
406 def setUp(self):
407 instrument = "testCam"
408 exposure0 = 101
409 exposure1 = 102
410 visit = 100101
411 detector = 42
413 # Create a and populate a test butler for runQuantum tests.
414 self.repo_path = tempfile.TemporaryDirectory(ignore_cleanup_errors=True)
415 self.repo = butlerTests.makeTestRepo(self.repo_path.name)
417 # A complete instrument record is necessary for the id generator.
418 instrumentRecord = self.repo.dimensions["instrument"].RecordClass(
419 name=instrument, visit_max=1e6, exposure_max=1e6, detector_max=128,
420 class_name="lsst.obs.base.instrument_tests.DummyCam",
421 )
422 self.repo.registry.syncDimensionData("instrument", instrumentRecord)
424 # dataIds for fake data
425 butlerTests.addDataIdValue(self.repo, "detector", detector)
426 butlerTests.addDataIdValue(self.repo, "exposure", exposure0)
427 butlerTests.addDataIdValue(self.repo, "exposure", exposure1)
428 butlerTests.addDataIdValue(self.repo, "visit", visit)
430 # inputs
431 butlerTests.addDatasetType(self.repo, "postISRCCD", {"instrument", "exposure", "detector"},
432 "ExposureF")
433 butlerTests.addDatasetType(self.repo, "gaia_dr3_20230707", {"htm7"}, "SimpleCatalog")
434 butlerTests.addDatasetType(self.repo, "ps1_pv3_3pi_20170110", {"htm7"}, "SimpleCatalog")
436 # outputs
437 butlerTests.addDatasetType(self.repo, "initial_pvi", {"instrument", "visit", "detector"},
438 "ExposureF")
439 butlerTests.addDatasetType(self.repo, "initial_stars_footprints_detector",
440 {"instrument", "visit", "detector"},
441 "SourceCatalog")
442 butlerTests.addDatasetType(self.repo, "initial_stars_detector",
443 {"instrument", "visit", "detector"},
444 "ArrowAstropy")
445 butlerTests.addDatasetType(self.repo, "initial_photoCalib_detector",
446 {"instrument", "visit", "detector"},
447 "PhotoCalib")
448 # optional outputs
449 butlerTests.addDatasetType(self.repo, "initial_pvi_background", {"instrument", "visit", "detector"},
450 "Background")
451 butlerTests.addDatasetType(self.repo, "initial_psf_stars_footprints_detector",
452 {"instrument", "visit", "detector"},
453 "SourceCatalog")
454 butlerTests.addDatasetType(self.repo, "initial_psf_stars_detector",
455 {"instrument", "visit", "detector"},
456 "ArrowAstropy")
457 butlerTests.addDatasetType(self.repo,
458 "initial_astrometry_match_detector",
459 {"instrument", "visit", "detector"},
460 "Catalog")
461 butlerTests.addDatasetType(self.repo,
462 "initial_photometry_match_detector",
463 {"instrument", "visit", "detector"},
464 "Catalog")
466 # dataIds
467 self.exposure0_id = self.repo.registry.expandDataId(
468 {"instrument": instrument, "exposure": exposure0, "detector": detector})
469 self.exposure1_id = self.repo.registry.expandDataId(
470 {"instrument": instrument, "exposure": exposure1, "detector": detector})
471 self.visit_id = self.repo.registry.expandDataId(
472 {"instrument": instrument, "visit": visit, "detector": detector})
473 self.htm_id = self.repo.registry.expandDataId({"htm7": 42})
475 # put empty data
476 self.butler = butlerTests.makeTestCollection(self.repo)
477 self.butler.put(afwImage.ExposureF(), "postISRCCD", self.exposure0_id)
478 self.butler.put(afwImage.ExposureF(), "postISRCCD", self.exposure1_id)
479 self.butler.put(afwTable.SimpleCatalog(), "gaia_dr3_20230707", self.htm_id)
480 self.butler.put(afwTable.SimpleCatalog(), "ps1_pv3_3pi_20170110", self.htm_id)
482 def tearDown(self):
483 self.repo_path.cleanup()
485 def test_runQuantum(self):
486 task = CalibrateImageTask()
487 lsst.pipe.base.testUtils.assertValidInitOutput(task)
489 quantum = lsst.pipe.base.testUtils.makeQuantum(
490 task, self.butler, self.visit_id,
491 {"exposures": [self.exposure0_id],
492 "astrometry_ref_cat": [self.htm_id],
493 "photometry_ref_cat": [self.htm_id],
494 # outputs
495 "exposure": self.visit_id,
496 "stars": self.visit_id,
497 "stars_footprints": self.visit_id,
498 "background": self.visit_id,
499 "psf_stars": self.visit_id,
500 "psf_stars_footprints": self.visit_id,
501 "applied_photo_calib": self.visit_id,
502 "initial_pvi_background": self.visit_id,
503 "astrometry_matches": self.visit_id,
504 "photometry_matches": self.visit_id,
505 })
506 mock_run = lsst.pipe.base.testUtils.runTestQuantum(task, self.butler, quantum)
508 # Ensure the reference loaders have been configured.
509 self.assertEqual(task.astrometry.refObjLoader.name, "gaia_dr3_20230707")
510 self.assertEqual(task.photometry.match.refObjLoader.name, "ps1_pv3_3pi_20170110")
511 # Check that the proper kwargs are passed to run().
512 self.assertEqual(mock_run.call_args.kwargs.keys(), {"exposures", "result", "id_generator"})
514 def test_runQuantum_2_snaps(self):
515 task = CalibrateImageTask()
516 lsst.pipe.base.testUtils.assertValidInitOutput(task)
518 quantum = lsst.pipe.base.testUtils.makeQuantum(
519 task, self.butler, self.visit_id,
520 {"exposures": [self.exposure0_id, self.exposure1_id],
521 "astrometry_ref_cat": [self.htm_id],
522 "photometry_ref_cat": [self.htm_id],
523 # outputs
524 "exposure": self.visit_id,
525 "stars": self.visit_id,
526 "stars_footprints": self.visit_id,
527 "background": self.visit_id,
528 "psf_stars": self.visit_id,
529 "psf_stars_footprints": self.visit_id,
530 "applied_photo_calib": self.visit_id,
531 "initial_pvi_background": self.visit_id,
532 "astrometry_matches": self.visit_id,
533 "photometry_matches": self.visit_id,
534 })
535 mock_run = lsst.pipe.base.testUtils.runTestQuantum(task, self.butler, quantum)
537 # Ensure the reference loaders have been configured.
538 self.assertEqual(task.astrometry.refObjLoader.name, "gaia_dr3_20230707")
539 self.assertEqual(task.photometry.match.refObjLoader.name, "ps1_pv3_3pi_20170110")
540 # Check that the proper kwargs are passed to run().
541 self.assertEqual(mock_run.call_args.kwargs.keys(), {"exposures", "result", "id_generator"})
543 def test_runQuantum_no_optional_outputs(self):
544 config = CalibrateImageTask.ConfigClass()
545 config.optional_outputs = None
546 task = CalibrateImageTask(config=config)
547 lsst.pipe.base.testUtils.assertValidInitOutput(task)
549 quantum = lsst.pipe.base.testUtils.makeQuantum(
550 task, self.butler, self.visit_id,
551 {"exposures": [self.exposure0_id],
552 "astrometry_ref_cat": [self.htm_id],
553 "photometry_ref_cat": [self.htm_id],
554 # outputs
555 "exposure": self.visit_id,
556 "stars": self.visit_id,
557 "stars_footprints": self.visit_id,
558 "applied_photo_calib": self.visit_id,
559 "background": self.visit_id,
560 })
561 mock_run = lsst.pipe.base.testUtils.runTestQuantum(task, self.butler, quantum)
563 # Ensure the reference loaders have been configured.
564 self.assertEqual(task.astrometry.refObjLoader.name, "gaia_dr3_20230707")
565 self.assertEqual(task.photometry.match.refObjLoader.name, "ps1_pv3_3pi_20170110")
566 # Check that the proper kwargs are passed to run().
567 self.assertEqual(mock_run.call_args.kwargs.keys(), {"exposures", "result", "id_generator"})
569 def test_lintConnections(self):
570 """Check that the connections are self-consistent.
571 """
572 Connections = CalibrateImageTask.ConfigClass.ConnectionsClass
573 lsst.pipe.base.testUtils.lintConnections(Connections)
575 def test_runQuantum_exception(self):
576 """Test exception handling in runQuantum.
577 """
578 task = CalibrateImageTask()
579 lsst.pipe.base.testUtils.assertValidInitOutput(task)
581 quantum = lsst.pipe.base.testUtils.makeQuantum(
582 task, self.butler, self.visit_id,
583 {"exposures": [self.exposure0_id],
584 "astrometry_ref_cat": [self.htm_id],
585 "photometry_ref_cat": [self.htm_id],
586 # outputs
587 "exposure": self.visit_id,
588 "stars": self.visit_id,
589 "stars_footprints": self.visit_id,
590 "background": self.visit_id,
591 "psf_stars": self.visit_id,
592 "psf_stars_footprints": self.visit_id,
593 "applied_photo_calib": self.visit_id,
594 "initial_pvi_background": self.visit_id,
595 "astrometry_matches": self.visit_id,
596 "photometry_matches": self.visit_id,
597 })
599 # A generic exception should raise directly.
600 msg = "mocked run exception"
601 with (
602 mock.patch.object(task, "run", side_effect=ValueError(msg)),
603 self.assertRaisesRegex(ValueError, "mocked run exception")
604 ):
605 lsst.pipe.base.testUtils.runTestQuantum(task, self.butler, quantum, mockRun=False)
607 # A AlgorimthError should write annotated partial outputs.
608 error = lsst.meas.algorithms.MeasureApCorrError(name="test", nSources=100, ndof=101)
610 def mock_run(exposures, result=None, id_generator=None):
611 """Mock success through compute_psf, but failure after.
612 """
613 result.exposure = afwImage.ExposureF(10, 10)
614 result.psf_stars_footprints = afwTable.SourceCatalog()
615 result.psf_stars = afwTable.SourceCatalog().asAstropy()
616 result.background = afwMath.BackgroundList()
617 raise error
619 with (
620 mock.patch.object(task, "run", side_effect=mock_run),
621 self.assertRaises(lsst.pipe.base.AnnotatedPartialOutputsError),
622 lsst.log.UsePythonLogging(), # so that assertLogs works with lsst.log
623 ):
624 with self.assertLogs("lsst.calibrateImage", level="ERROR") as cm:
625 lsst.pipe.base.testUtils.runTestQuantum(task,
626 self.butler,
627 quantum,
628 mockRun=False)
630 logged = "\n".join(cm.output)
631 self.assertIn("Task failed with only partial outputs", logged)
632 self.assertIn("MeasureApCorrError", logged)
634 # NOTE: This is an integration test of afw Exposure & SourceCatalog
635 # metadata with the error annotation system in pipe_base.
636 # Check that we did get the annotated partial outputs...
637 pvi = self.butler.get("initial_pvi", self.visit_id)
638 self.assertIn("Unable to measure aperture correction", pvi.metadata["failure.message"])
639 self.assertIn("MeasureApCorrError", pvi.metadata["failure.type"])
640 self.assertEqual(pvi.metadata["failure.metadata.ndof"], 101)
641 stars = self.butler.get("initial_psf_stars_footprints_detector", self.visit_id)
642 self.assertIn("Unable to measure aperture correction", stars.metadata["failure.message"])
643 self.assertIn("MeasureApCorrError", stars.metadata["failure.type"])
644 self.assertEqual(stars.metadata["failure.metadata.ndof"], 101)
645 # ... but not the un-produced outputs.
646 with self.assertRaises(FileNotFoundError):
647 self.butler.get("initial_stars_footprints_detector", self.visit_id)
650def setup_module(module):
651 lsst.utils.tests.init()
654class MemoryTestCase(lsst.utils.tests.MemoryTestCase):
655 pass
658if __name__ == "__main__": 658 ↛ 659line 658 didn't jump to line 659, because the condition on line 658 was never true
659 lsst.utils.tests.init()
660 unittest.main()