Coverage for python/lsst/daf/butler/tests/_datasetsHelper.py: 32%
60 statements
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-16 10:44 +0000
« prev ^ index » next coverage.py v7.4.0, created at 2024-01-16 10:44 +0000
1# This file is part of daf_butler.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This software is dual licensed under the GNU General Public License and also
10# under a 3-clause BSD license. Recipients may choose which of these licenses
11# to use; please see the files gpl-3.0.txt and/or bsd_license.txt,
12# respectively. If you choose the GPL option then the following text applies
13# (but note that there is still no warranty even if you opt for BSD instead):
14#
15# This program is free software: you can redistribute it and/or modify
16# it under the terms of the GNU General Public License as published by
17# the Free Software Foundation, either version 3 of the License, or
18# (at your option) any later version.
19#
20# This program is distributed in the hope that it will be useful,
21# but WITHOUT ANY WARRANTY; without even the implied warranty of
22# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
23# GNU General Public License for more details.
24#
25# You should have received a copy of the GNU General Public License
26# along with this program. If not, see <http://www.gnu.org/licenses/>.
28from __future__ import annotations
30__all__ = (
31 "DatasetTestHelper",
32 "DatastoreTestHelper",
33 "BadWriteFormatter",
34 "BadNoWriteFormatter",
35 "MultiDetectorFormatter",
36)
38import os
39from collections.abc import Iterable, Mapping
40from typing import TYPE_CHECKING, Any
42from lsst.daf.butler import DataCoordinate, DatasetRef, DatasetType, DimensionGroup, StorageClass
43from lsst.daf.butler.formatters.yaml import YamlFormatter
45if TYPE_CHECKING:
46 from lsst.daf.butler import Config, DatasetId, Datastore, Dimension, DimensionGraph
49class DatasetTestHelper:
50 """Helper methods for Datasets."""
52 def makeDatasetRef(
53 self,
54 datasetTypeName: str,
55 dimensions: DimensionGroup | DimensionGraph | Iterable[str | Dimension],
56 storageClass: StorageClass | str,
57 dataId: DataCoordinate | Mapping[str, Any],
58 *,
59 id: DatasetId | None = None,
60 run: str | None = None,
61 conform: bool = True,
62 ) -> DatasetRef:
63 """Make a DatasetType and wrap it in a DatasetRef for a test.
65 Parameters
66 ----------
67 datasetTypeName : `str`
68 The name of the dataset type.
69 dimensions : `DimensionGroup` or `~collections.abc.Iterable` of `str` \
70 or `Dimension`
71 The dimensions to use for this dataset type.
72 storageClass : `StorageClass` or `str`
73 The relevant storage class.
74 dataId : `DataCoordinate` or `~collections.abc.Mapping`
75 The data ID of this ref.
76 id : `DatasetId` or `None`, optional
77 The Id of this ref. Will be assigned automatically.
78 run : `str` or `None`, optional
79 The run for this ref. Will be assigned a default value if `None`.
80 conform : `bool`, optional
81 Whther to force the dataID to be checked for conformity with
82 the provided dimensions.
84 Returns
85 -------
86 ref : `DatasetRef`
87 The new ref.
88 """
89 return self._makeDatasetRef(
90 datasetTypeName,
91 dimensions,
92 storageClass,
93 dataId,
94 id=id,
95 run=run,
96 conform=conform,
97 )
99 def _makeDatasetRef(
100 self,
101 datasetTypeName: str,
102 dimensions: DimensionGroup | DimensionGraph | Iterable[str | Dimension],
103 storageClass: StorageClass | str,
104 dataId: DataCoordinate | Mapping,
105 *,
106 id: DatasetId | None = None,
107 run: str | None = None,
108 conform: bool = True,
109 ) -> DatasetRef:
110 # helper for makeDatasetRef
112 # Pretend we have a parent if this looks like a composite
113 compositeName, componentName = DatasetType.splitDatasetTypeName(datasetTypeName)
114 parentStorageClass = StorageClass("component") if componentName else None
116 datasetType = DatasetType(
117 datasetTypeName, dimensions, storageClass, parentStorageClass=parentStorageClass
118 )
120 if run is None:
121 run = "dummy"
122 if not isinstance(dataId, DataCoordinate):
123 dataId = DataCoordinate.standardize(dataId, dimensions=datasetType.dimensions)
124 return DatasetRef(datasetType, dataId, id=id, run=run, conform=conform)
127class DatastoreTestHelper:
128 """Helper methods for Datastore tests."""
130 root: str | None
131 config: Config
132 datastoreType: type[Datastore]
133 configFile: str
135 def setUpDatastoreTests(self, registryClass: type, configClass: type[Config]) -> None:
136 """Shared setUp code for all Datastore tests.
138 Parameters
139 ----------
140 registryClass : `type`
141 Type of registry to use.
142 configClass : `type`
143 Type of config to use.
144 """
145 self.registry = registryClass()
146 self.config = configClass(self.configFile)
148 # Some subclasses override the working root directory
149 if self.root is not None:
150 self.datastoreType.setConfigRoot(self.root, self.config, self.config.copy())
152 def makeDatastore(self, sub: str | None = None) -> Datastore:
153 """Make a new Datastore instance of the appropriate type.
155 Parameters
156 ----------
157 sub : `str`, optional
158 If not None, the returned Datastore will be distinct from any
159 Datastore constructed with a different value of ``sub``. For
160 PosixDatastore, for example, the converse is also true, and ``sub``
161 is used as a subdirectory to form the new root.
163 Returns
164 -------
165 datastore : `Datastore`
166 Datastore constructed by this routine using the supplied
167 optional subdirectory if supported.
168 """
169 config = self.config.copy()
170 if sub is not None and self.root is not None:
171 self.datastoreType.setConfigRoot(os.path.join(self.root, sub), config, self.config)
172 if sub is not None:
173 # Ensure that each datastore gets its own registry
174 registryClass = type(self.registry)
175 registry = registryClass()
176 else:
177 registry = self.registry
178 return self.datastoreType(config=config, bridgeManager=registry.getDatastoreBridgeManager())
181class BadWriteFormatter(YamlFormatter):
182 """A formatter that never works but does leave a file behind."""
184 def _readFile(self, path: str, pytype: type[Any] | None = None) -> Any:
185 raise NotImplementedError("This formatter can not read anything")
187 def _writeFile(self, inMemoryDataset: Any) -> None:
188 """Write an empty file and then raise an exception."""
189 with open(self.fileDescriptor.location.path, "wb"):
190 pass
191 raise RuntimeError("Did not succeed in writing file")
194class BadNoWriteFormatter(BadWriteFormatter):
195 """A formatter that always fails without writing anything."""
197 def _writeFile(self, inMemoryDataset: Any) -> None:
198 raise RuntimeError("Did not writing anything at all")
201class MultiDetectorFormatter(YamlFormatter):
202 """A formatter that requires a detector to be specified in the dataID."""
204 def _writeFile(self, inMemoryDataset: Any) -> None:
205 raise NotImplementedError("Can not write")
207 def _fromBytes(self, serializedDataset: bytes, pytype: type[Any] | None = None) -> Any:
208 data = super()._fromBytes(serializedDataset)
209 if self.dataId is None:
210 raise RuntimeError("This formatter requires a dataId")
211 if "detector" not in self.dataId:
212 raise RuntimeError("This formatter requires detector to be present in dataId")
213 key = f"detector{self.dataId['detector']}"
214 assert pytype is not None
215 if key in data:
216 return pytype(data[key])
217 raise RuntimeError(f"Could not find '{key}' in data file")