Coverage for tests/test_subtractTask.py: 7%

614 statements  

« prev     ^ index     » next       coverage.py v7.3.2, created at 2023-10-15 10:25 +0000

1# This file is part of ip_diffim. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (https://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <https://www.gnu.org/licenses/>. 

21 

22import unittest 

23 

24import lsst.afw.math as afwMath 

25import lsst.afw.table as afwTable 

26import lsst.geom 

27import lsst.meas.algorithms as measAlg 

28from lsst.ip.diffim import subtractImages 

29from lsst.pex.config import FieldValidationError 

30import lsst.utils.tests 

31import numpy as np 

32from lsst.ip.diffim.utils import (computeRobustStatistics, computePSFNoiseEquivalentArea, 

33 evaluateMeanPsfFwhm, getPsfFwhm, makeStats, makeTestImage) 

34from lsst.pex.exceptions import InvalidParameterError 

35 

36 

37class CustomCoaddPsf(measAlg.CoaddPsf): 

38 """A custom CoaddPSF that overrides the getAveragePosition method. 

39 """ 

40 def getAveragePosition(self): 

41 return lsst.geom.Point2D(-10000, -10000) 

42 

43 

44class AlardLuptonSubtractTest(lsst.utils.tests.TestCase): 

45 

46 def test_allowed_config_modes(self): 

47 """Verify the allowable modes for convolution. 

48 """ 

49 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

50 config.mode = 'auto' 

51 config.mode = 'convolveScience' 

52 config.mode = 'convolveTemplate' 

53 

54 with self.assertRaises(FieldValidationError): 

55 config.mode = 'aotu' 

56 

57 def test_mismatched_template(self): 

58 """Test that an error is raised if the template 

59 does not fully contain the science image. 

60 """ 

61 xSize = 200 

62 ySize = 200 

63 science, sources = makeTestImage(psfSize=2.4, xSize=xSize + 20, ySize=ySize + 20) 

64 template, _ = makeTestImage(psfSize=2.4, xSize=xSize, ySize=ySize, doApplyCalibration=True) 

65 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

66 task = subtractImages.AlardLuptonSubtractTask(config=config) 

67 with self.assertRaises(AssertionError): 

68 task.run(template, science, sources) 

69 

70 def test_clear_template_mask(self): 

71 noiseLevel = 1. 

72 science, sources = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=6) 

73 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

74 templateBorderSize=20, doApplyCalibration=True) 

75 diffimEmptyMaskPlanes = ["DETECTED", "DETECTED_NEGATIVE"] 

76 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

77 config.doSubtractBackground = False 

78 config.mode = "convolveTemplate" 

79 # Ensure that each each mask plane is set for some pixels 

80 mask = template.mask 

81 x0 = 50 

82 x1 = 75 

83 y0 = 150 

84 y1 = 175 

85 scienceMaskCheck = {} 

86 for maskPlane in mask.getMaskPlaneDict().keys(): 

87 scienceMaskCheck[maskPlane] = np.sum(science.mask.array & mask.getPlaneBitMask(maskPlane) > 0) 

88 mask.array[x0: x1, y0: y1] |= mask.getPlaneBitMask(maskPlane) 

89 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) > 0)) 

90 

91 task = subtractImages.AlardLuptonSubtractTask(config=config) 

92 output = task.run(template, science, sources) 

93 # Verify that the template mask has been modified in place 

94 for maskPlane in mask.getMaskPlaneDict().keys(): 

95 if maskPlane in diffimEmptyMaskPlanes: 

96 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) == 0)) 

97 elif maskPlane in config.preserveTemplateMask: 

98 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) > 0)) 

99 else: 

100 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) == 0)) 

101 # Mask planes set in the science image should also be set in the difference 

102 # Except the "DETECTED" planes should have been cleared 

103 diffimMask = output.difference.mask 

104 for maskPlane, scienceSum in scienceMaskCheck.items(): 

105 diffimSum = np.sum(diffimMask.array & mask.getPlaneBitMask(maskPlane) > 0) 

106 if maskPlane in diffimEmptyMaskPlanes: 

107 self.assertEqual(diffimSum, 0) 

108 else: 

109 self.assertTrue(diffimSum >= scienceSum) 

110 

111 def test_equal_images(self): 

112 """Test that running with enough sources produces reasonable output, 

113 with the same size psf in the template and science. 

114 """ 

115 noiseLevel = 1. 

116 science, sources = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=6) 

117 template, _ = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=7, 

118 templateBorderSize=20, doApplyCalibration=True) 

119 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

120 config.doSubtractBackground = False 

121 task = subtractImages.AlardLuptonSubtractTask(config=config) 

122 output = task.run(template, science, sources) 

123 # There shoud be no NaN values in the difference image 

124 self.assertTrue(np.all(np.isfinite(output.difference.image.array))) 

125 # Mean of difference image should be close to zero. 

126 meanError = noiseLevel/np.sqrt(output.difference.image.array.size) 

127 # Make sure to include pixels with the DETECTED mask bit set. 

128 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA", "DETECTED", "DETECTED_NEGATIVE")) 

129 differenceMean = computeRobustStatistics(output.difference.image, output.difference.mask, statsCtrl) 

130 self.assertFloatsAlmostEqual(differenceMean, 0, atol=5*meanError) 

131 # stddev of difference image should be close to expected value. 

132 differenceStd = computeRobustStatistics(output.difference.image, output.difference.mask, 

133 makeStats(), statistic=afwMath.STDEV) 

134 self.assertFloatsAlmostEqual(differenceStd, np.sqrt(2)*noiseLevel, rtol=0.1) 

135 

136 def test_psf_size(self): 

137 """Test that the image subtract task runs without failing, if 

138 fwhmExposureBuffer and fwhmExposureGrid parameters are set. 

139 """ 

140 noiseLevel = 1. 

141 science, sources = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=6) 

142 template, _ = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=7, 

143 templateBorderSize=20, doApplyCalibration=True) 

144 

145 schema = afwTable.ExposureTable.makeMinimalSchema() 

146 weightKey = schema.addField("weight", type="D", doc="Coadd weight") 

147 exposureCatalog = afwTable.ExposureCatalog(schema) 

148 kernel = measAlg.DoubleGaussianPsf(7, 7, 2.0).getKernel() 

149 psf = measAlg.KernelPsf(kernel, template.getBBox().getCenter()) 

150 

151 record = exposureCatalog.addNew() 

152 record.setPsf(psf) 

153 record.setWcs(template.wcs) 

154 record.setD(weightKey, 1.0) 

155 record.setBBox(template.getBBox()) 

156 

157 customPsf = CustomCoaddPsf(exposureCatalog, template.wcs) 

158 template.setPsf(customPsf) 

159 

160 # Test that we get an exception if we simply get the FWHM at center. 

161 with self.assertRaises(InvalidParameterError): 

162 getPsfFwhm(template.psf, True) 

163 

164 with self.assertRaises(InvalidParameterError): 

165 getPsfFwhm(template.psf, False) 

166 

167 # Test that evaluateMeanPsfFwhm runs successfully on the template. 

168 evaluateMeanPsfFwhm(template, fwhmExposureBuffer=0.05, fwhmExposureGrid=10) 

169 

170 # Since the PSF is spatially invariant, the FWHM should be the same at 

171 # all points in the science image. 

172 fwhm1 = getPsfFwhm(science.psf, False) 

173 fwhm2 = evaluateMeanPsfFwhm(science, fwhmExposureBuffer=0.05, fwhmExposureGrid=10) 

174 self.assertAlmostEqual(fwhm1[0], fwhm2, places=13) 

175 self.assertAlmostEqual(fwhm1[1], fwhm2, places=13) 

176 

177 self.assertAlmostEqual(evaluateMeanPsfFwhm(science, fwhmExposureBuffer=0.05, 

178 fwhmExposureGrid=10), 

179 getPsfFwhm(science.psf, True), places=7 

180 ) 

181 

182 # Test that the image subtraction task runs successfully. 

183 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

184 config.doSubtractBackground = False 

185 task = subtractImages.AlardLuptonSubtractTask(config=config) 

186 

187 # Test that the task runs if we take the mean FWHM on a grid. 

188 with self.assertLogs(level="INFO") as cm: 

189 task.run(template, science, sources) 

190 

191 # Check that evaluateMeanPsfFwhm was called. 

192 # This tests that getPsfFwhm failed raising InvalidParameterError, 

193 # that is caught and handled appropriately. 

194 logMessage = ("INFO:lsst.alardLuptonSubtract:Unable to evaluate PSF at the average position. " 

195 "Evaluting PSF on a grid of points." 

196 ) 

197 self.assertIn(logMessage, cm.output) 

198 

199 def test_auto_convolveTemplate(self): 

200 """Test that auto mode gives the same result as convolveTemplate when 

201 the template psf is the smaller. 

202 """ 

203 noiseLevel = 1. 

204 science, sources = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=6) 

205 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

206 templateBorderSize=20, doApplyCalibration=True) 

207 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

208 config.doSubtractBackground = False 

209 config.mode = "convolveTemplate" 

210 

211 task = subtractImages.AlardLuptonSubtractTask(config=config) 

212 output = task.run(template.clone(), science.clone(), sources) 

213 

214 config.mode = "auto" 

215 task = subtractImages.AlardLuptonSubtractTask(config=config) 

216 outputAuto = task.run(template, science, sources) 

217 self.assertMaskedImagesEqual(output.difference.maskedImage, outputAuto.difference.maskedImage) 

218 

219 def test_auto_convolveScience(self): 

220 """Test that auto mode gives the same result as convolveScience when 

221 the science psf is the smaller. 

222 """ 

223 noiseLevel = 1. 

224 science, sources = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=6) 

225 template, _ = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=7, 

226 templateBorderSize=20, doApplyCalibration=True) 

227 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

228 config.doSubtractBackground = False 

229 config.mode = "convolveScience" 

230 

231 task = subtractImages.AlardLuptonSubtractTask(config=config) 

232 output = task.run(template.clone(), science.clone(), sources) 

233 

234 config.mode = "auto" 

235 task = subtractImages.AlardLuptonSubtractTask(config=config) 

236 outputAuto = task.run(template, science, sources) 

237 self.assertMaskedImagesEqual(output.difference.maskedImage, outputAuto.difference.maskedImage) 

238 

239 def test_science_better(self): 

240 """Test that running with enough sources produces reasonable output, 

241 with the science psf being smaller than the template. 

242 """ 

243 statsCtrl = makeStats() 

244 statsCtrlDetect = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

245 

246 def _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel, templateNoiseLevel): 

247 science, sources = makeTestImage(psfSize=2.0, noiseLevel=scienceNoiseLevel, noiseSeed=6) 

248 template, _ = makeTestImage(psfSize=3.0, noiseLevel=templateNoiseLevel, noiseSeed=7, 

249 templateBorderSize=20, doApplyCalibration=True) 

250 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

251 config.doSubtractBackground = False 

252 config.mode = "convolveScience" 

253 task = subtractImages.AlardLuptonSubtractTask(config=config) 

254 output = task.run(template, science, sources) 

255 self.assertFloatsAlmostEqual(task.metadata["scaleTemplateVarianceFactor"], 1., atol=.05) 

256 self.assertFloatsAlmostEqual(task.metadata["scaleScienceVarianceFactor"], 1., atol=.05) 

257 # Mean of difference image should be close to zero. 

258 nGoodPix = np.sum(np.isfinite(output.difference.image.array)) 

259 meanError = (scienceNoiseLevel + templateNoiseLevel)/np.sqrt(nGoodPix) 

260 diffimMean = computeRobustStatistics(output.difference.image, output.difference.mask, 

261 statsCtrlDetect) 

262 

263 self.assertFloatsAlmostEqual(diffimMean, 0, atol=5*meanError) 

264 # stddev of difference image should be close to expected value. 

265 noiseLevel = np.sqrt(scienceNoiseLevel**2 + templateNoiseLevel**2) 

266 varianceMean = computeRobustStatistics(output.difference.variance, output.difference.mask, 

267 statsCtrl) 

268 diffimStd = computeRobustStatistics(output.difference.image, output.difference.mask, 

269 statsCtrl, statistic=afwMath.STDEV) 

270 self.assertFloatsAlmostEqual(varianceMean, noiseLevel**2, rtol=0.1) 

271 self.assertFloatsAlmostEqual(diffimStd, noiseLevel, rtol=0.1) 

272 

273 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=1., templateNoiseLevel=1.) 

274 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=1., templateNoiseLevel=.1) 

275 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=.1, templateNoiseLevel=.1) 

276 

277 def test_template_better(self): 

278 """Test that running with enough sources produces reasonable output, 

279 with the template psf being smaller than the science. 

280 """ 

281 statsCtrl = makeStats() 

282 statsCtrlDetect = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

283 

284 def _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel, templateNoiseLevel): 

285 science, sources = makeTestImage(psfSize=3.0, noiseLevel=scienceNoiseLevel, noiseSeed=6) 

286 template, _ = makeTestImage(psfSize=2.0, noiseLevel=templateNoiseLevel, noiseSeed=7, 

287 templateBorderSize=20, doApplyCalibration=True) 

288 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

289 config.doSubtractBackground = False 

290 task = subtractImages.AlardLuptonSubtractTask(config=config) 

291 output = task.run(template, science, sources) 

292 self.assertFloatsAlmostEqual(task.metadata["scaleTemplateVarianceFactor"], 1., atol=.05) 

293 self.assertFloatsAlmostEqual(task.metadata["scaleScienceVarianceFactor"], 1., atol=.05) 

294 # There should be no NaNs in the image if we convolve the template with a buffer 

295 self.assertTrue(np.all(np.isfinite(output.difference.image.array))) 

296 # Mean of difference image should be close to zero. 

297 meanError = (scienceNoiseLevel + templateNoiseLevel)/np.sqrt(output.difference.image.array.size) 

298 

299 diffimMean = computeRobustStatistics(output.difference.image, output.difference.mask, 

300 statsCtrlDetect) 

301 self.assertFloatsAlmostEqual(diffimMean, 0, atol=5*meanError) 

302 # stddev of difference image should be close to expected value. 

303 noiseLevel = np.sqrt(scienceNoiseLevel**2 + templateNoiseLevel**2) 

304 varianceMean = computeRobustStatistics(output.difference.variance, output.difference.mask, 

305 statsCtrl) 

306 diffimStd = computeRobustStatistics(output.difference.image, output.difference.mask, 

307 statsCtrl, statistic=afwMath.STDEV) 

308 self.assertFloatsAlmostEqual(varianceMean, noiseLevel**2, rtol=0.1) 

309 self.assertFloatsAlmostEqual(diffimStd, noiseLevel, rtol=0.1) 

310 

311 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=1., templateNoiseLevel=1.) 

312 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=1., templateNoiseLevel=.1) 

313 _run_and_check_images(statsCtrl, statsCtrlDetect, scienceNoiseLevel=.1, templateNoiseLevel=.1) 

314 

315 def test_symmetry(self): 

316 """Test that convolving the science and convolving the template are 

317 symmetric: if the psfs are switched between them, the difference image 

318 should be nearly the same. 

319 """ 

320 noiseLevel = 1. 

321 # Don't include a border for the template, in order to make the results 

322 # comparable when we swap which image is treated as the "science" image. 

323 science, sources = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, 

324 noiseSeed=6, templateBorderSize=0, doApplyCalibration=True) 

325 template, _ = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, 

326 noiseSeed=7, templateBorderSize=0, doApplyCalibration=True) 

327 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

328 config.mode = 'auto' 

329 config.doSubtractBackground = False 

330 task = subtractImages.AlardLuptonSubtractTask(config=config) 

331 

332 # The science image will be modified in place, so use a copy for the second run. 

333 science_better = task.run(template.clone(), science.clone(), sources) 

334 template_better = task.run(science, template, sources) 

335 

336 delta = template_better.difference.clone() 

337 delta.image -= science_better.difference.image 

338 delta.variance -= science_better.difference.variance 

339 delta.mask.array -= science_better.difference.mask.array 

340 

341 statsCtrl = makeStats() 

342 # Mean of delta should be very close to zero. 

343 nGoodPix = np.sum(np.isfinite(delta.image.array)) 

344 meanError = 2*noiseLevel/np.sqrt(nGoodPix) 

345 deltaMean = computeRobustStatistics(delta.image, delta.mask, statsCtrl) 

346 deltaStd = computeRobustStatistics(delta.image, delta.mask, statsCtrl, statistic=afwMath.STDEV) 

347 self.assertFloatsAlmostEqual(deltaMean, 0, atol=5*meanError) 

348 # stddev of difference image should be close to expected value 

349 self.assertFloatsAlmostEqual(deltaStd, 2*np.sqrt(2)*noiseLevel, rtol=.1) 

350 

351 def test_few_sources(self): 

352 """Test with only 1 source, to check that we get a useful error. 

353 """ 

354 xSize = 256 

355 ySize = 256 

356 science, sources = makeTestImage(psfSize=2.4, nSrc=10, xSize=xSize, ySize=ySize) 

357 template, _ = makeTestImage(psfSize=2.0, nSrc=10, xSize=xSize, ySize=ySize, doApplyCalibration=True) 

358 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

359 task = subtractImages.AlardLuptonSubtractTask(config=config) 

360 sources = sources[0:1] 

361 with self.assertRaisesRegex(RuntimeError, 

362 "Cannot compute PSF matching kernel: too few sources selected."): 

363 task.run(template, science, sources) 

364 

365 def test_order_equal_images(self): 

366 """Verify that the result is the same regardless of convolution mode 

367 if the images are equivalent. 

368 """ 

369 noiseLevel = .1 

370 seed1 = 6 

371 seed2 = 7 

372 science1, sources1 = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=seed1, 

373 clearEdgeMask=True) 

374 template1, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=seed2, 

375 templateBorderSize=0, doApplyCalibration=True, 

376 clearEdgeMask=True) 

377 config1 = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

378 config1.mode = "convolveTemplate" 

379 config1.doSubtractBackground = False 

380 task1 = subtractImages.AlardLuptonSubtractTask(config=config1) 

381 results_convolveTemplate = task1.run(template1, science1, sources1) 

382 

383 science2, sources2 = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=seed1, 

384 clearEdgeMask=True) 

385 template2, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=seed2, 

386 templateBorderSize=0, doApplyCalibration=True, 

387 clearEdgeMask=True) 

388 config2 = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

389 config2.mode = "convolveScience" 

390 config2.doSubtractBackground = False 

391 task2 = subtractImages.AlardLuptonSubtractTask(config=config2) 

392 results_convolveScience = task2.run(template2, science2, sources2) 

393 bbox = results_convolveTemplate.difference.getBBox().clippedTo( 

394 results_convolveScience.difference.getBBox()) 

395 diff1 = science1.maskedImage.clone()[bbox] 

396 diff1 -= template1.maskedImage[bbox] 

397 diff2 = science2.maskedImage.clone()[bbox] 

398 diff2 -= template2.maskedImage[bbox] 

399 self.assertFloatsAlmostEqual(results_convolveTemplate.difference[bbox].image.array, 

400 diff1.image.array, 

401 atol=noiseLevel*5.) 

402 self.assertFloatsAlmostEqual(results_convolveScience.difference[bbox].image.array, 

403 diff2.image.array, 

404 atol=noiseLevel*5.) 

405 diffErr = noiseLevel*2 

406 self.assertMaskedImagesAlmostEqual(results_convolveTemplate.difference[bbox].maskedImage, 

407 results_convolveScience.difference[bbox].maskedImage, 

408 atol=diffErr*5.) 

409 

410 def test_background_subtraction(self): 

411 """Check that we can recover the background, 

412 and that it is subtracted correctly in the difference image. 

413 """ 

414 noiseLevel = 1. 

415 xSize = 512 

416 ySize = 512 

417 x0 = 123 

418 y0 = 456 

419 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

420 templateBorderSize=20, 

421 xSize=xSize, ySize=ySize, x0=x0, y0=y0, 

422 doApplyCalibration=True) 

423 params = [2.2, 2.1, 2.0, 1.2, 1.1, 1.0] 

424 

425 bbox2D = lsst.geom.Box2D(lsst.geom.Point2D(x0, y0), lsst.geom.Extent2D(xSize, ySize)) 

426 background_model = afwMath.Chebyshev1Function2D(params, bbox2D) 

427 science, sources = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=6, 

428 background=background_model, 

429 xSize=xSize, ySize=ySize, x0=x0, y0=y0) 

430 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

431 config.doSubtractBackground = True 

432 

433 config.makeKernel.kernel.name = "AL" 

434 config.makeKernel.kernel.active.fitForBackground = True 

435 config.makeKernel.kernel.active.spatialKernelOrder = 1 

436 config.makeKernel.kernel.active.spatialBgOrder = 2 

437 statsCtrl = makeStats() 

438 

439 def _run_and_check_images(config, statsCtrl, mode): 

440 """Check that the fit background matches the input model. 

441 """ 

442 config.mode = mode 

443 task = subtractImages.AlardLuptonSubtractTask(config=config) 

444 output = task.run(template.clone(), science.clone(), sources) 

445 

446 # We should be fitting the same number of parameters as were in the input model 

447 self.assertEqual(output.backgroundModel.getNParameters(), background_model.getNParameters()) 

448 

449 # The parameters of the background fit should be close to the input model 

450 self.assertFloatsAlmostEqual(np.array(output.backgroundModel.getParameters()), 

451 np.array(params), rtol=0.3) 

452 

453 # stddev of difference image should be close to expected value. 

454 # This will fail if we have mis-subtracted the background. 

455 stdVal = computeRobustStatistics(output.difference.image, output.difference.mask, 

456 statsCtrl, statistic=afwMath.STDEV) 

457 self.assertFloatsAlmostEqual(stdVal, np.sqrt(2)*noiseLevel, rtol=0.1) 

458 

459 _run_and_check_images(config, statsCtrl, "convolveTemplate") 

460 _run_and_check_images(config, statsCtrl, "convolveScience") 

461 

462 def test_scale_variance_convolve_template(self): 

463 """Check variance scaling of the image difference. 

464 """ 

465 scienceNoiseLevel = 4. 

466 templateNoiseLevel = 2. 

467 scaleFactor = 1.345 

468 # Make sure to include pixels with the DETECTED mask bit set. 

469 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

470 

471 def _run_and_check_images(science, template, sources, statsCtrl, 

472 doDecorrelation, doScaleVariance, scaleFactor=1.): 

473 """Check that the variance plane matches the expected value for 

474 different configurations of ``doDecorrelation`` and ``doScaleVariance``. 

475 """ 

476 

477 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

478 config.doSubtractBackground = False 

479 config.doDecorrelation = doDecorrelation 

480 config.doScaleVariance = doScaleVariance 

481 task = subtractImages.AlardLuptonSubtractTask(config=config) 

482 output = task.run(template.clone(), science.clone(), sources) 

483 if doScaleVariance: 

484 self.assertFloatsAlmostEqual(task.metadata["scaleTemplateVarianceFactor"], 

485 scaleFactor, atol=0.05) 

486 self.assertFloatsAlmostEqual(task.metadata["scaleScienceVarianceFactor"], 

487 scaleFactor, atol=0.05) 

488 

489 scienceNoise = computeRobustStatistics(science.variance, science.mask, statsCtrl) 

490 if doDecorrelation: 

491 templateNoise = computeRobustStatistics(template.variance, template.mask, statsCtrl) 

492 else: 

493 templateNoise = computeRobustStatistics(output.matchedTemplate.variance, 

494 output.matchedTemplate.mask, 

495 statsCtrl) 

496 

497 if doScaleVariance: 

498 templateNoise *= scaleFactor 

499 scienceNoise *= scaleFactor 

500 varMean = computeRobustStatistics(output.difference.variance, output.difference.mask, statsCtrl) 

501 self.assertFloatsAlmostEqual(varMean, scienceNoise + templateNoise, rtol=0.1) 

502 

503 science, sources = makeTestImage(psfSize=3.0, noiseLevel=scienceNoiseLevel, noiseSeed=6) 

504 template, _ = makeTestImage(psfSize=2.0, noiseLevel=templateNoiseLevel, noiseSeed=7, 

505 templateBorderSize=20, doApplyCalibration=True) 

506 # Verify that the variance plane of the difference image is correct 

507 # when the template and science variance planes are correct 

508 _run_and_check_images(science, template, sources, statsCtrl, 

509 doDecorrelation=True, doScaleVariance=True) 

510 _run_and_check_images(science, template, sources, statsCtrl, 

511 doDecorrelation=True, doScaleVariance=False) 

512 _run_and_check_images(science, template, sources, statsCtrl, 

513 doDecorrelation=False, doScaleVariance=True) 

514 _run_and_check_images(science, template, sources, statsCtrl, 

515 doDecorrelation=False, doScaleVariance=False) 

516 

517 # Verify that the variance plane of the difference image is correct 

518 # when the template variance plane is incorrect 

519 template.variance.array /= scaleFactor 

520 science.variance.array /= scaleFactor 

521 _run_and_check_images(science, template, sources, statsCtrl, 

522 doDecorrelation=True, doScaleVariance=True, scaleFactor=scaleFactor) 

523 _run_and_check_images(science, template, sources, statsCtrl, 

524 doDecorrelation=True, doScaleVariance=False, scaleFactor=scaleFactor) 

525 _run_and_check_images(science, template, sources, statsCtrl, 

526 doDecorrelation=False, doScaleVariance=True, scaleFactor=scaleFactor) 

527 _run_and_check_images(science, template, sources, statsCtrl, 

528 doDecorrelation=False, doScaleVariance=False, scaleFactor=scaleFactor) 

529 

530 def test_scale_variance_convolve_science(self): 

531 """Check variance scaling of the image difference. 

532 """ 

533 scienceNoiseLevel = 4. 

534 templateNoiseLevel = 2. 

535 scaleFactor = 1.345 

536 # Make sure to include pixels with the DETECTED mask bit set. 

537 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

538 

539 def _run_and_check_images(science, template, sources, statsCtrl, 

540 doDecorrelation, doScaleVariance, scaleFactor=1.): 

541 """Check that the variance plane matches the expected value for 

542 different configurations of ``doDecorrelation`` and ``doScaleVariance``. 

543 """ 

544 

545 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

546 config.mode = "convolveScience" 

547 config.doSubtractBackground = False 

548 config.doDecorrelation = doDecorrelation 

549 config.doScaleVariance = doScaleVariance 

550 task = subtractImages.AlardLuptonSubtractTask(config=config) 

551 output = task.run(template.clone(), science.clone(), sources) 

552 if doScaleVariance: 

553 self.assertFloatsAlmostEqual(task.metadata["scaleTemplateVarianceFactor"], 

554 scaleFactor, atol=0.05) 

555 self.assertFloatsAlmostEqual(task.metadata["scaleScienceVarianceFactor"], 

556 scaleFactor, atol=0.05) 

557 

558 templateNoise = computeRobustStatistics(template.variance, template.mask, statsCtrl) 

559 if doDecorrelation: 

560 scienceNoise = computeRobustStatistics(science.variance, science.mask, statsCtrl) 

561 else: 

562 scienceNoise = computeRobustStatistics(output.matchedScience.variance, 

563 output.matchedScience.mask, 

564 statsCtrl) 

565 

566 if doScaleVariance: 

567 templateNoise *= scaleFactor 

568 scienceNoise *= scaleFactor 

569 

570 varMean = computeRobustStatistics(output.difference.variance, output.difference.mask, statsCtrl) 

571 self.assertFloatsAlmostEqual(varMean, scienceNoise + templateNoise, rtol=0.1) 

572 

573 science, sources = makeTestImage(psfSize=2.0, noiseLevel=scienceNoiseLevel, noiseSeed=6) 

574 template, _ = makeTestImage(psfSize=3.0, noiseLevel=templateNoiseLevel, noiseSeed=7, 

575 templateBorderSize=20, doApplyCalibration=True) 

576 # Verify that the variance plane of the difference image is correct 

577 # when the template and science variance planes are correct 

578 _run_and_check_images(science, template, sources, statsCtrl, 

579 doDecorrelation=True, doScaleVariance=True) 

580 _run_and_check_images(science, template, sources, statsCtrl, 

581 doDecorrelation=True, doScaleVariance=False) 

582 _run_and_check_images(science, template, sources, statsCtrl, 

583 doDecorrelation=False, doScaleVariance=True) 

584 _run_and_check_images(science, template, sources, statsCtrl, 

585 doDecorrelation=False, doScaleVariance=False) 

586 

587 # Verify that the variance plane of the difference image is correct 

588 # when the template and science variance planes are incorrect 

589 science.variance.array /= scaleFactor 

590 template.variance.array /= scaleFactor 

591 _run_and_check_images(science, template, sources, statsCtrl, 

592 doDecorrelation=True, doScaleVariance=True, scaleFactor=scaleFactor) 

593 _run_and_check_images(science, template, sources, statsCtrl, 

594 doDecorrelation=True, doScaleVariance=False, scaleFactor=scaleFactor) 

595 _run_and_check_images(science, template, sources, statsCtrl, 

596 doDecorrelation=False, doScaleVariance=True, scaleFactor=scaleFactor) 

597 _run_and_check_images(science, template, sources, statsCtrl, 

598 doDecorrelation=False, doScaleVariance=False, scaleFactor=scaleFactor) 

599 

600 def test_exposure_properties_convolve_template(self): 

601 """Check that all necessary exposure metadata is included 

602 when the template is convolved. 

603 """ 

604 noiseLevel = 1. 

605 seed = 37 

606 rng = np.random.RandomState(seed) 

607 science, sources = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=6) 

608 psf = science.psf 

609 psfAvgPos = psf.getAveragePosition() 

610 psfSize = getPsfFwhm(science.psf) 

611 psfImg = psf.computeKernelImage(psfAvgPos) 

612 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

613 templateBorderSize=20, doApplyCalibration=True) 

614 

615 # Generate a random aperture correction map 

616 apCorrMap = lsst.afw.image.ApCorrMap() 

617 for name in ("a", "b", "c"): 

618 apCorrMap.set(name, lsst.afw.math.ChebyshevBoundedField(science.getBBox(), rng.randn(3, 3))) 

619 science.info.setApCorrMap(apCorrMap) 

620 

621 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

622 config.mode = "convolveTemplate" 

623 

624 def _run_and_check_images(doDecorrelation): 

625 """Check that the metadata is correct with or without decorrelation. 

626 """ 

627 config.doDecorrelation = doDecorrelation 

628 task = subtractImages.AlardLuptonSubtractTask(config=config) 

629 output = task.run(template.clone(), science.clone(), sources) 

630 psfOut = output.difference.psf 

631 psfAvgPos = psfOut.getAveragePosition() 

632 if doDecorrelation: 

633 # Decorrelation requires recalculating the PSF, 

634 # so it will not be the same as the input 

635 psfOutSize = getPsfFwhm(science.psf) 

636 self.assertFloatsAlmostEqual(psfSize, psfOutSize) 

637 else: 

638 psfOutImg = psfOut.computeKernelImage(psfAvgPos) 

639 self.assertImagesAlmostEqual(psfImg, psfOutImg) 

640 

641 # check PSF, WCS, bbox, filterLabel, photoCalib, aperture correction 

642 self._compare_apCorrMaps(apCorrMap, output.difference.info.getApCorrMap()) 

643 self.assertWcsAlmostEqualOverBBox(science.wcs, output.difference.wcs, science.getBBox()) 

644 self.assertEqual(science.filter, output.difference.filter) 

645 self.assertEqual(science.photoCalib, output.difference.photoCalib) 

646 _run_and_check_images(doDecorrelation=True) 

647 _run_and_check_images(doDecorrelation=False) 

648 

649 def test_exposure_properties_convolve_science(self): 

650 """Check that all necessary exposure metadata is included 

651 when the science image is convolved. 

652 """ 

653 noiseLevel = 1. 

654 seed = 37 

655 rng = np.random.RandomState(seed) 

656 science, sources = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=6) 

657 template, _ = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=7, 

658 templateBorderSize=20, doApplyCalibration=True) 

659 psf = template.psf 

660 psfAvgPos = psf.getAveragePosition() 

661 psfSize = getPsfFwhm(template.psf) 

662 psfImg = psf.computeKernelImage(psfAvgPos) 

663 

664 # Generate a random aperture correction map 

665 apCorrMap = lsst.afw.image.ApCorrMap() 

666 for name in ("a", "b", "c"): 

667 apCorrMap.set(name, lsst.afw.math.ChebyshevBoundedField(science.getBBox(), rng.randn(3, 3))) 

668 science.info.setApCorrMap(apCorrMap) 

669 

670 config = subtractImages.AlardLuptonSubtractTask.ConfigClass() 

671 config.mode = "convolveScience" 

672 

673 def _run_and_check_images(doDecorrelation): 

674 """Check that the metadata is correct with or without decorrelation. 

675 """ 

676 config.doDecorrelation = doDecorrelation 

677 task = subtractImages.AlardLuptonSubtractTask(config=config) 

678 output = task.run(template.clone(), science.clone(), sources) 

679 if doDecorrelation: 

680 # Decorrelation requires recalculating the PSF, 

681 # so it will not be the same as the input 

682 psfOutSize = getPsfFwhm(template.psf) 

683 self.assertFloatsAlmostEqual(psfSize, psfOutSize) 

684 else: 

685 psfOut = output.difference.psf 

686 psfAvgPos = psfOut.getAveragePosition() 

687 psfOutImg = psfOut.computeKernelImage(psfAvgPos) 

688 self.assertImagesAlmostEqual(psfImg, psfOutImg) 

689 

690 # check PSF, WCS, bbox, filterLabel, photoCalib, aperture correction 

691 self._compare_apCorrMaps(apCorrMap, output.difference.info.getApCorrMap()) 

692 self.assertWcsAlmostEqualOverBBox(science.wcs, output.difference.wcs, science.getBBox()) 

693 self.assertEqual(science.filter, output.difference.filter) 

694 self.assertEqual(science.photoCalib, output.difference.photoCalib) 

695 

696 _run_and_check_images(doDecorrelation=True) 

697 _run_and_check_images(doDecorrelation=False) 

698 

699 def _compare_apCorrMaps(self, a, b): 

700 """Compare two ApCorrMaps for equality, without assuming that their BoundedFields have the 

701 same addresses (i.e. so we can compare after serialization). 

702 

703 This function is taken from ``ApCorrMapTestCase`` in afw/tests/. 

704 

705 Parameters 

706 ---------- 

707 a, b : `lsst.afw.image.ApCorrMap` 

708 The two aperture correction maps to compare. 

709 """ 

710 self.assertEqual(len(a), len(b)) 

711 for name, value in list(a.items()): 

712 value2 = b.get(name) 

713 self.assertIsNotNone(value2) 

714 self.assertEqual(value.getBBox(), value2.getBBox()) 

715 self.assertFloatsAlmostEqual( 

716 value.getCoefficients(), value2.getCoefficients(), rtol=0.0) 

717 

718 

719class AlardLuptonPreconvolveSubtractTest(lsst.utils.tests.TestCase): 

720 

721 def test_mismatched_template(self): 

722 """Test that an error is raised if the template 

723 does not fully contain the science image. 

724 """ 

725 xSize = 200 

726 ySize = 200 

727 science, sources = makeTestImage(psfSize=2.4, xSize=xSize + 20, ySize=ySize + 20) 

728 template, _ = makeTestImage(psfSize=2.4, xSize=xSize, ySize=ySize, doApplyCalibration=True) 

729 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

730 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

731 with self.assertRaises(AssertionError): 

732 task.run(template, science, sources) 

733 

734 def test_equal_images(self): 

735 """Test that running with enough sources produces reasonable output, 

736 with the same size psf in the template and science. 

737 """ 

738 noiseLevel = 1. 

739 xSize = 400 

740 ySize = 400 

741 science, sources = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=6, 

742 xSize=xSize, ySize=ySize) 

743 template, _ = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, noiseSeed=7, 

744 templateBorderSize=20, doApplyCalibration=True, 

745 xSize=xSize, ySize=ySize) 

746 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

747 config.doSubtractBackground = False 

748 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

749 output = task.run(template, science, sources) 

750 # There shoud be no NaN values in the Score image 

751 self.assertTrue(np.all(np.isfinite(output.scoreExposure.image.array))) 

752 # Mean of Score image should be close to zero. 

753 meanError = noiseLevel/np.sqrt(output.scoreExposure.image.array.size) 

754 # Make sure to include pixels with the DETECTED mask bit set. 

755 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

756 scoreMean = computeRobustStatistics(output.scoreExposure.image, 

757 output.scoreExposure.mask, 

758 statsCtrl) 

759 self.assertFloatsAlmostEqual(scoreMean, 0, atol=5*meanError) 

760 nea = computePSFNoiseEquivalentArea(science.psf) 

761 # stddev of Score image should be close to expected value. 

762 scoreStd = computeRobustStatistics(output.scoreExposure.image, output.scoreExposure.mask, 

763 statsCtrl=statsCtrl, statistic=afwMath.STDEV) 

764 self.assertFloatsAlmostEqual(scoreStd, np.sqrt(2)*noiseLevel/np.sqrt(nea), rtol=0.1) 

765 

766 def test_clear_template_mask(self): 

767 noiseLevel = 1. 

768 xSize = 400 

769 ySize = 400 

770 science, sources = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=6, 

771 xSize=xSize, ySize=ySize) 

772 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

773 templateBorderSize=20, doApplyCalibration=True, 

774 xSize=xSize, ySize=ySize) 

775 diffimEmptyMaskPlanes = ["DETECTED", "DETECTED_NEGATIVE"] 

776 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

777 config.doSubtractBackground = False # Ensure that each each mask plane is set for some pixels 

778 mask = template.mask 

779 x0 = 50 

780 x1 = 75 

781 y0 = 150 

782 y1 = 175 

783 scienceMaskCheck = {} 

784 for maskPlane in mask.getMaskPlaneDict().keys(): 

785 scienceMaskCheck[maskPlane] = np.sum(science.mask.array & mask.getPlaneBitMask(maskPlane) > 0) 

786 mask.array[x0: x1, y0: y1] |= mask.getPlaneBitMask(maskPlane) 

787 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) > 0)) 

788 

789 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

790 output = task.run(template, science, sources) 

791 # Verify that the template mask has been modified in place 

792 for maskPlane in mask.getMaskPlaneDict().keys(): 

793 if maskPlane in diffimEmptyMaskPlanes: 

794 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) == 0)) 

795 elif maskPlane in config.preserveTemplateMask: 

796 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) > 0)) 

797 else: 

798 self.assertTrue(np.sum(mask.array & mask.getPlaneBitMask(maskPlane) == 0)) 

799 # Mask planes set in the science image should also be set in the difference 

800 # Except the "DETECTED" planes should have been cleared 

801 diffimMask = output.scoreExposure.mask 

802 for maskPlane, scienceSum in scienceMaskCheck.items(): 

803 diffimSum = np.sum(diffimMask.array & mask.getPlaneBitMask(maskPlane) > 0) 

804 if maskPlane in diffimEmptyMaskPlanes: 

805 self.assertEqual(diffimSum, 0) 

806 else: 

807 self.assertTrue(diffimSum >= scienceSum) 

808 

809 def test_agnostic_template_psf(self): 

810 """Test that the Score image is the same whether the template PSF is 

811 larger or smaller than the science image PSF. 

812 """ 

813 noiseLevel = .3 

814 xSize = 400 

815 ySize = 400 

816 science, sources = makeTestImage(psfSize=2.4, noiseLevel=noiseLevel, 

817 noiseSeed=6, templateBorderSize=0, 

818 xSize=xSize, ySize=ySize) 

819 template1, _ = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, 

820 noiseSeed=7, doApplyCalibration=True, 

821 xSize=xSize, ySize=ySize) 

822 template2, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, 

823 noiseSeed=8, doApplyCalibration=True, 

824 xSize=xSize, ySize=ySize) 

825 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

826 config.doSubtractBackground = False 

827 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

828 

829 science_better = task.run(template1, science.clone(), sources) 

830 template_better = task.run(template2, science, sources) 

831 bbox = science_better.scoreExposure.getBBox().clippedTo(template_better.scoreExposure.getBBox()) 

832 

833 delta = template_better.scoreExposure[bbox].clone() 

834 delta.image -= science_better.scoreExposure[bbox].image 

835 delta.variance -= science_better.scoreExposure[bbox].variance 

836 delta.mask.array &= science_better.scoreExposure[bbox].mask.array 

837 

838 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

839 # Mean of delta should be very close to zero. 

840 nGoodPix = np.sum(np.isfinite(delta.image.array)) 

841 meanError = 2*noiseLevel/np.sqrt(nGoodPix) 

842 deltaMean = computeRobustStatistics(delta.image, delta.mask, statsCtrl) 

843 deltaStd = computeRobustStatistics(delta.image, delta.mask, statsCtrl, 

844 statistic=afwMath.STDEV) 

845 self.assertFloatsAlmostEqual(deltaMean, 0, atol=5*meanError) 

846 nea = computePSFNoiseEquivalentArea(science.psf) 

847 # stddev of Score image should be close to expected value 

848 self.assertFloatsAlmostEqual(deltaStd, np.sqrt(2)*noiseLevel/np.sqrt(nea), rtol=.1) 

849 

850 def test_few_sources(self): 

851 """Test with only 1 source, to check that we get a useful error. 

852 """ 

853 xSize = 256 

854 ySize = 256 

855 science, sources = makeTestImage(psfSize=2.4, nSrc=10, xSize=xSize, ySize=ySize) 

856 template, _ = makeTestImage(psfSize=2.0, nSrc=10, xSize=xSize, ySize=ySize, doApplyCalibration=True) 

857 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

858 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

859 sources = sources[0:1] 

860 with self.assertRaisesRegex(RuntimeError, 

861 "Cannot compute PSF matching kernel: too few sources selected."): 

862 task.run(template, science, sources) 

863 

864 def test_background_subtraction(self): 

865 """Check that we can recover the background, 

866 and that it is subtracted correctly in the Score image. 

867 """ 

868 noiseLevel = 1. 

869 xSize = 512 

870 ySize = 512 

871 x0 = 123 

872 y0 = 456 

873 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

874 templateBorderSize=20, 

875 xSize=xSize, ySize=ySize, x0=x0, y0=y0, 

876 doApplyCalibration=True) 

877 params = [2.2, 2.1, 2.0, 1.2, 1.1, 1.0] 

878 

879 bbox2D = lsst.geom.Box2D(lsst.geom.Point2D(x0, y0), lsst.geom.Extent2D(xSize, ySize)) 

880 background_model = afwMath.Chebyshev1Function2D(params, bbox2D) 

881 science, sources = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=6, 

882 background=background_model, 

883 xSize=xSize, ySize=ySize, x0=x0, y0=y0) 

884 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

885 config.doSubtractBackground = True 

886 

887 config.makeKernel.kernel.name = "AL" 

888 config.makeKernel.kernel.active.fitForBackground = True 

889 config.makeKernel.kernel.active.spatialKernelOrder = 1 

890 config.makeKernel.kernel.active.spatialBgOrder = 2 

891 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

892 

893 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

894 output = task.run(template.clone(), science.clone(), sources) 

895 

896 # We should be fitting the same number of parameters as were in the input model 

897 self.assertEqual(output.backgroundModel.getNParameters(), background_model.getNParameters()) 

898 

899 # The parameters of the background fit should be close to the input model 

900 self.assertFloatsAlmostEqual(np.array(output.backgroundModel.getParameters()), 

901 np.array(params), rtol=0.2) 

902 

903 # stddev of Score image should be close to expected value. 

904 # This will fail if we have mis-subtracted the background. 

905 stdVal = computeRobustStatistics(output.scoreExposure.image, output.scoreExposure.mask, 

906 statsCtrl, statistic=afwMath.STDEV) 

907 # get the img psf Noise Equivalent Area value 

908 nea = computePSFNoiseEquivalentArea(science.psf) 

909 self.assertFloatsAlmostEqual(stdVal, np.sqrt(2)*noiseLevel/np.sqrt(nea), rtol=0.1) 

910 

911 def test_scale_variance(self): 

912 """Check variance scaling of the Score image. 

913 """ 

914 scienceNoiseLevel = 4. 

915 templateNoiseLevel = 2. 

916 scaleFactor = 1.345 

917 xSize = 400 

918 ySize = 400 

919 # Make sure to include pixels with the DETECTED mask bit set. 

920 statsCtrl = makeStats(badMaskPlanes=("EDGE", "BAD", "NO_DATA")) 

921 

922 def _run_and_check_images(science, template, sources, statsCtrl, 

923 doDecorrelation, doScaleVariance, scaleFactor=1.): 

924 """Check that the variance plane matches the expected value for 

925 different configurations of ``doDecorrelation`` and ``doScaleVariance``. 

926 """ 

927 

928 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

929 config.doSubtractBackground = False 

930 config.doDecorrelation = doDecorrelation 

931 config.doScaleVariance = doScaleVariance 

932 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

933 output = task.run(template.clone(), science.clone(), sources) 

934 if doScaleVariance: 

935 self.assertFloatsAlmostEqual(task.metadata["scaleTemplateVarianceFactor"], 

936 scaleFactor, atol=0.05) 

937 self.assertFloatsAlmostEqual(task.metadata["scaleScienceVarianceFactor"], 

938 scaleFactor, atol=0.05) 

939 

940 scienceNoise = computeRobustStatistics(science.variance, science.mask, statsCtrl) 

941 # get the img psf Noise Equivalent Area value 

942 nea = computePSFNoiseEquivalentArea(science.psf) 

943 scienceNoise /= nea 

944 if doDecorrelation: 

945 templateNoise = computeRobustStatistics(template.variance, template.mask, statsCtrl) 

946 templateNoise /= nea 

947 else: 

948 # Don't divide by NEA in this case, since the template is convolved 

949 # and in the same units as the Score exposure. 

950 templateNoise = computeRobustStatistics(output.matchedTemplate.variance, 

951 output.matchedTemplate.mask, 

952 statsCtrl) 

953 if doScaleVariance: 

954 templateNoise *= scaleFactor 

955 scienceNoise *= scaleFactor 

956 varMean = computeRobustStatistics(output.scoreExposure.variance, 

957 output.scoreExposure.mask, 

958 statsCtrl) 

959 self.assertFloatsAlmostEqual(varMean, scienceNoise + templateNoise, rtol=0.1) 

960 

961 science, sources = makeTestImage(psfSize=3.0, noiseLevel=scienceNoiseLevel, noiseSeed=6, 

962 xSize=xSize, ySize=ySize) 

963 template, _ = makeTestImage(psfSize=2.0, noiseLevel=templateNoiseLevel, noiseSeed=7, 

964 templateBorderSize=20, doApplyCalibration=True, 

965 xSize=xSize, ySize=ySize) 

966 # Verify that the variance plane of the Score image is correct 

967 # when the template and science variance planes are correct 

968 _run_and_check_images(science, template, sources, statsCtrl, 

969 doDecorrelation=True, doScaleVariance=True) 

970 _run_and_check_images(science, template, sources, statsCtrl, 

971 doDecorrelation=True, doScaleVariance=False) 

972 _run_and_check_images(science, template, sources, statsCtrl, 

973 doDecorrelation=False, doScaleVariance=True) 

974 _run_and_check_images(science, template, sources, statsCtrl, 

975 doDecorrelation=False, doScaleVariance=False) 

976 

977 # Verify that the variance plane of the Score image is correct 

978 # when the template variance plane is incorrect 

979 template.variance.array /= scaleFactor 

980 science.variance.array /= scaleFactor 

981 _run_and_check_images(science, template, sources, statsCtrl, 

982 doDecorrelation=True, doScaleVariance=True, scaleFactor=scaleFactor) 

983 _run_and_check_images(science, template, sources, statsCtrl, 

984 doDecorrelation=True, doScaleVariance=False, scaleFactor=scaleFactor) 

985 _run_and_check_images(science, template, sources, statsCtrl, 

986 doDecorrelation=False, doScaleVariance=True, scaleFactor=scaleFactor) 

987 _run_and_check_images(science, template, sources, statsCtrl, 

988 doDecorrelation=False, doScaleVariance=False, scaleFactor=scaleFactor) 

989 

990 def test_exposure_properties(self): 

991 """Check that all necessary exposure metadata is included 

992 with the Score image. 

993 """ 

994 noiseLevel = 1. 

995 xSize = 400 

996 ySize = 400 

997 science, sources = makeTestImage(psfSize=3.0, noiseLevel=noiseLevel, noiseSeed=6, 

998 xSize=xSize, ySize=ySize) 

999 psf = science.psf 

1000 psfAvgPos = psf.getAveragePosition() 

1001 psfSize = getPsfFwhm(science.psf) 

1002 psfImg = psf.computeKernelImage(psfAvgPos) 

1003 template, _ = makeTestImage(psfSize=2.0, noiseLevel=noiseLevel, noiseSeed=7, 

1004 templateBorderSize=20, doApplyCalibration=True, 

1005 xSize=xSize, ySize=ySize) 

1006 

1007 config = subtractImages.AlardLuptonPreconvolveSubtractTask.ConfigClass() 

1008 

1009 def _run_and_check_images(doDecorrelation): 

1010 """Check that the metadata is correct with or without decorrelation. 

1011 """ 

1012 config.doDecorrelation = doDecorrelation 

1013 task = subtractImages.AlardLuptonPreconvolveSubtractTask(config=config) 

1014 output = task.run(template.clone(), science.clone(), sources) 

1015 psfOut = output.scoreExposure.psf 

1016 psfAvgPos = psfOut.getAveragePosition() 

1017 if doDecorrelation: 

1018 # Decorrelation requires recalculating the PSF, 

1019 # so it will not be the same as the input 

1020 psfOutSize = getPsfFwhm(science.psf) 

1021 self.assertFloatsAlmostEqual(psfSize, psfOutSize) 

1022 else: 

1023 psfOutImg = psfOut.computeKernelImage(psfAvgPos) 

1024 self.assertImagesAlmostEqual(psfImg, psfOutImg) 

1025 

1026 # check PSF, WCS, bbox, filterLabel, photoCalib 

1027 self.assertWcsAlmostEqualOverBBox(science.wcs, output.scoreExposure.wcs, science.getBBox()) 

1028 self.assertEqual(science.filter, output.scoreExposure.filter) 

1029 self.assertEqual(science.photoCalib, output.scoreExposure.photoCalib) 

1030 _run_and_check_images(doDecorrelation=True) 

1031 _run_and_check_images(doDecorrelation=False) 

1032 

1033 

1034def setup_module(module): 

1035 lsst.utils.tests.init() 

1036 

1037 

1038class MemoryTestCase(lsst.utils.tests.MemoryTestCase): 

1039 pass 

1040 

1041 

1042if __name__ == "__main__": 1042 ↛ 1043line 1042 didn't jump to line 1043, because the condition on line 1042 was never true

1043 lsst.utils.tests.init() 

1044 unittest.main()