Coverage for python/lsst/analysis/tools/tasks/photometricCatalogMatch.py: 25%
88 statements
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-08 13:15 +0000
« prev ^ index » next coverage.py v7.3.2, created at 2023-12-08 13:15 +0000
1# This file is part of analysis_tools.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
22__all__ = ("PhotometricCatalogMatchConfig", "PhotometricCatalogMatchTask")
25import lsst.geom
26import lsst.pipe.base as pipeBase
27import numpy as np
28from astropy.table import Table
29from astropy.time import Time
30from lsst.pipe.tasks.loadReferenceCatalog import LoadReferenceCatalogTask
32from ..actions.vector import VisitPlotFlagSelector
33from ..tasks.catalogMatch import CatalogMatchConfig, CatalogMatchConnections, CatalogMatchTask
36class PhotometricCatalogMatchConnections(CatalogMatchConnections):
37 pass
40class PhotometricCatalogMatchConfig(
41 CatalogMatchConfig, pipelineConnections=PhotometricCatalogMatchConnections
42):
43 def setDefaults(self):
44 super().setDefaults()
45 self.referenceCatalogLoader.doReferenceSelection = False
46 self.referenceCatalogLoader.doApplyColorTerms = True
49class PhotometricCatalogMatchTask(CatalogMatchTask):
50 """A wrapper task to provide the information that
51 is specific to the photometric reference catalog.
52 """
54 ConfigClass = PhotometricCatalogMatchConfig
55 _DefaultName = "analysisToolsPhotometricCatalogMatch"
57 def runQuantum(self, butlerQC, inputRefs, outputRefs):
58 """Run the matching to the photometric reference
59 catalog.
61 Parameters
62 ----------
63 `butlerQC` : lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext
64 `inputRefs` : lsst.pipe.base.connections.InputQuantizedConnection
65 `outputRefs` : lsst.pipe.base.connections.OutputQuantizedConnection
67 """
69 inputs = butlerQC.get(inputRefs)
70 bands = []
71 for filterName in self.config.filterNames:
72 bands.append(self.config.referenceCatalogLoader.refObjLoader.filterMap[filterName])
74 # For some reason the imsim filterMaps don't work the same way as
75 # the HSC ones do, this is a bit hacky but fixes this
76 if "sim" in bands[0] or "smeared" in bands[0]:
77 bands = self.config.filterNames
79 columns = self.prepColumns(bands)
80 table = inputs["catalog"].get(parameters={"columns": columns})
82 tract = butlerQC.quantum.dataId["tract"]
84 loaderTask = LoadReferenceCatalogTask(
85 config=self.config.referenceCatalogLoader,
86 dataIds=[ref.dataId for ref in inputRefs.refCat],
87 name=inputs["refCat"][0].ref.datasetType.name,
88 refCats=inputs["refCat"],
89 )
91 skymap = inputs.pop("skymap")
92 loadedRefCat = self._loadRefCat(loaderTask, skymap[tract])
93 outputs = self.run(catalog=table, loadedRefCat=loadedRefCat, bands=bands)
95 butlerQC.put(outputs, outputRefs)
98class PhotometricCatalogMatchVisitConnections(
99 pipeBase.PipelineTaskConnections,
100 dimensions=("visit",),
101 defaultTemplates={"targetCatalog": "sourceTable_visit", "refCatalog": "ps1_pv3_3pi_20170110"},
102):
103 catalog = pipeBase.connectionTypes.Input(
104 doc="The visit-wide catalog to make plots from.",
105 storageClass="ArrowAstropy",
106 name="{targetCatalog}",
107 dimensions=("visit",),
108 deferLoad=True,
109 )
111 refCat = pipeBase.connectionTypes.PrerequisiteInput(
112 doc="The photometric reference catalog to match to.",
113 name="{refCatalog}",
114 storageClass="SimpleCatalog",
115 dimensions=("skypix",),
116 deferLoad=True,
117 multiple=True,
118 )
120 visitSummaryTable = pipeBase.connectionTypes.Input(
121 doc="A summary table of the ccds in the visit",
122 storageClass="ExposureCatalog",
123 name="visitSummary",
124 dimensions=("visit",),
125 )
127 matchedCatalog = pipeBase.connectionTypes.Output(
128 doc="Catalog with matched target and reference objects with separations",
129 name="{targetCatalog}_{refCatalog}_match",
130 storageClass="ArrowAstropy",
131 dimensions=("visit",),
132 )
135class PhotometricCatalogMatchVisitConfig(
136 PhotometricCatalogMatchConfig, pipelineConnections=PhotometricCatalogMatchVisitConnections
137):
138 def setDefaults(self):
139 self.filterNames = []
140 self.extraPerBandColumns = []
141 self.patchColumn = ""
142 self.selectorBands = []
143 self.selectorActions.flagSelector = VisitPlotFlagSelector
144 self.sourceSelectorActions.sourceSelector.vectorKey = "extendedness"
145 self.extraColumnSelectors.selector1.fluxType = "psfFlux"
146 self.extraColumnSelectors.selector2.vectorKey = "extendedness"
149class PhotometricCatalogMatchVisitTask(PhotometricCatalogMatchTask):
150 """A wrapper task to provide the information that
151 is specific to the photometric reference catalog.
152 """
154 ConfigClass = PhotometricCatalogMatchVisitConfig
155 _DefaultName = "analysisToolsPhotometricCatalogMatchVisit"
157 def runQuantum(self, butlerQC, inputRefs, outputRefs):
158 """Run the matching to the photometric reference
159 catalog.
161 Parameters
162 ----------
163 `butlerQC` : lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext
164 `inputRefs` : lsst.pipe.base.connections.InputQuantizedConnection
165 `outputRefs` : lsst.pipe.base.connections.OutputQuantizedConnection
167 """
169 inputs = butlerQC.get(inputRefs)
170 physicalFilter = inputs["catalog"].dataId["physical_filter"]
172 # For some reason the imsim filterMaps don't work the same way as
173 # the HSC ones do, this is a bit hacky but fixes this
174 if "sim" in physicalFilter:
175 physicalFilter = physicalFilter[0]
176 bands = [physicalFilter]
177 else:
178 bands = [self.config.referenceCatalogLoader.refObjLoader.filterMap[physicalFilter]]
179 # No bands needed for visit tables
180 # but we do need them later for the matching
181 columns = ["coord_ra", "coord_dec", "detector"] + self.config.extraColumns.list()
182 for selectorAction in [
183 self.config.selectorActions,
184 self.config.sourceSelectorActions,
185 self.config.extraColumnSelectors,
186 ]:
187 for selector in selectorAction:
188 selectorSchema = selector.getFormattedInputSchema()
189 columns += [s[0] for s in selectorSchema]
191 table = inputs["catalog"].get(parameters={"columns": columns})
193 loaderTask = LoadReferenceCatalogTask(
194 config=self.config.referenceCatalogLoader,
195 dataIds=[ref.dataId for ref in inputRefs.refCat],
196 name=inputs["refCat"][0].ref.datasetType.name,
197 refCats=inputs["refCat"],
198 )
200 visitSummaryTable = inputs.pop("visitSummaryTable")
201 loadedRefCat = self._loadRefCat(loaderTask, visitSummaryTable, physicalFilter)
202 outputs = self.run(catalog=table, loadedRefCat=loadedRefCat, bands=bands)
204 # The matcher adds the band to the front of the columns
205 # but the visit plots aren't expecting it
206 cols = list(outputs.matchedCatalog.columns)
207 for col in cols:
208 if col[:2] == bands[0] + "_":
209 outputs.matchedCatalog.rename_column(col, col[2:])
211 butlerQC.put(outputs, outputRefs)
213 def _loadRefCat(self, loaderTask, visitSummaryTable, physicalFilter):
214 """Make a reference catalog with coordinates in degrees
216 Parameters
217 ----------
218 visitSummaryTable : `lsst.afw.table.ExposureCatalog`
219 The table of visit information
220 """
221 # Get convex hull around the detectors, then get its center and radius
222 corners = []
223 for visSum in visitSummaryTable:
224 for ra, dec in zip(visSum["raCorners"], visSum["decCorners"]):
225 # If the coordinates are nan then don't keep going
226 # because it crashes later
227 if not np.isfinite(ra) or not np.isfinite(dec):
228 raise pipeBase.NoWorkFound("Visit summary corners not finite")
229 corners.append(lsst.geom.SpherePoint(ra, dec, units=lsst.geom.degrees).getVector())
230 visitBoundingCircle = lsst.sphgeom.ConvexPolygon.convexHull(corners).getBoundingCircle()
231 center = lsst.geom.SpherePoint(visitBoundingCircle.getCenter())
232 radius = visitBoundingCircle.getOpeningAngle()
234 # Get the observation date of the visit
235 obsDate = visSum.getVisitInfo().getDate()
236 epoch = Time(obsDate.toPython())
238 # Load the reference catalog in the skyCircle of the detectors, then
239 # convert the coordinates to degrees and convert the catalog to a
240 # dataframe
242 loadedRefCat = loaderTask.getSkyCircleCatalog(center, radius, [physicalFilter], epoch=epoch)
244 return Table(loadedRefCat)