Coverage for python/lsst/summit/utils/utils.py: 17%

328 statements  

« prev     ^ index     » next       coverage.py v7.2.7, created at 2023-06-26 09:40 +0000

1# This file is part of summit_utils. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (https://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <https://www.gnu.org/licenses/>. 

21 

22import os 

23from typing import Iterable 

24import numpy as np 

25import logging 

26from scipy.ndimage import gaussian_filter 

27import lsst.afw.image as afwImage 

28import lsst.afw.detection as afwDetect 

29from lsst.afw.detection import Footprint, FootprintSet 

30import lsst.afw.math as afwMath 

31import lsst.daf.base as dafBase 

32import lsst.geom as geom 

33import lsst.pipe.base as pipeBase 

34import lsst.utils.packages as packageUtils 

35from lsst.daf.butler.cli.cliLog import CliLog 

36import datetime 

37from dateutil.tz import gettz 

38 

39from lsst.obs.lsst.translators.lsst import FILTER_DELIMITER 

40from lsst.obs.lsst.translators.latiss import AUXTEL_LOCATION 

41 

42from astro_metadata_translator import ObservationInfo 

43from astropy.coordinates import SkyCoord, AltAz 

44from astropy.coordinates.earth import EarthLocation 

45import astropy.units as u 

46from astropy.time import Time 

47 

48from .astrometry.utils import genericCameraHeaderToWcs 

49 

50__all__ = ["SIGMATOFWHM", 

51 "FWHMTOSIGMA", 

52 "EFD_CLIENT_MISSING_MSG", 

53 "GOOGLE_CLOUD_MISSING_MSG", 

54 "AUXTEL_LOCATION", 

55 "countPixels", 

56 "quickSmooth", 

57 "argMax2d", 

58 "getImageStats", 

59 "detectObjectsInExp", 

60 "humanNameForCelestialObject", 

61 "getFocusFromHeader", 

62 "dayObsIntToString", 

63 "dayObsSeqNumToVisitId", 

64 "setupLogging", 

65 "getCurrentDayObs_datetime", 

66 "getCurrentDayObs_int", 

67 "getCurrentDayObs_humanStr", 

68 "getSite", 

69 "getExpPositionOffset", 

70 "starTrackerFileToExposure", 

71 "getAirmassSeeingCorrection", 

72 "getFilterSeeingCorrection", 

73 "getCdf", 

74 "getQuantiles", 

75 "digitizeData", 

76 ] 

77 

78 

79SIGMATOFWHM = 2.0*np.sqrt(2.0*np.log(2.0)) 

80FWHMTOSIGMA = 1/SIGMATOFWHM 

81 

82EFD_CLIENT_MISSING_MSG = ('ImportError: lsst_efd_client not found. Please install with:\n' 

83 ' pip install lsst-efd-client') 

84 

85GOOGLE_CLOUD_MISSING_MSG = ('ImportError: Google cloud storage not found. Please install with:\n' 

86 ' pip install google-cloud-storage') 

87 

88 

89def countPixels(maskedImage, maskPlane): 

90 """Count the number of pixels in an image with a given mask bit set. 

91 

92 Parameters 

93 ---------- 

94 maskedImage : `lsst.afw.image.MaskedImage` 

95 The masked image, 

96 maskPlane : `str` 

97 The name of the bitmask. 

98 

99 Returns 

100 ------- 

101 count : `int`` 

102 The number of pixels in with the selected mask bit 

103 """ 

104 bit = maskedImage.mask.getPlaneBitMask(maskPlane) 

105 return len(np.where(np.bitwise_and(maskedImage.mask.array, bit))[0]) 

106 

107 

108def quickSmooth(data, sigma=2): 

109 """Perform a quick smoothing of the image. 

110 

111 Not to be used for scientific purposes, but improves the stretch and 

112 visual rendering of low SNR against the sky background in cutouts. 

113 

114 Parameters 

115 ---------- 

116 data : `np.array` 

117 The image data to smooth 

118 sigma : `float`, optional 

119 The size of the smoothing kernel. 

120 

121 Returns 

122 ------- 

123 smoothData : `np.array` 

124 The smoothed data 

125 """ 

126 kernel = [sigma, sigma] 

127 smoothData = gaussian_filter(data, kernel, mode='constant') 

128 return smoothData 

129 

130 

131def argMax2d(array): 

132 """Get the index of the max value of an array and whether it's unique. 

133 

134 If its not unique, returns a list of the other locations containing the 

135 maximum value, e.g. returns 

136 

137 (12, 34), False, [(56,78), (910, 1112)] 

138 

139 Parameters 

140 ---------- 

141 array : `np.array` 

142 The data 

143 

144 Returns 

145 ------- 

146 maxLocation : `tuple` 

147 The coords of the first instance of the max value 

148 unique : `bool` 

149 Whether it's the only location 

150 otherLocations : `list` of `tuple` 

151 List of the other max values' locations, empty if False 

152 """ 

153 uniqueMaximum = False 

154 maxCoords = np.where(array == np.max(array)) 

155 maxCoords = [coord for coord in zip(*maxCoords)] # list of coords as tuples 

156 if len(maxCoords) == 1: # single unambiguous value 

157 uniqueMaximum = True 

158 

159 return maxCoords[0], uniqueMaximum, maxCoords[1:] 

160 

161 

162def dayObsIntToString(dayObs): 

163 """Convert an integer dayObs to a dash-delimited string. 

164 

165 e.g. convert the hard to read 20210101 to 2021-01-01 

166 

167 Parameters 

168 ---------- 

169 dayObs : `int` 

170 The dayObs. 

171 

172 Returns 

173 ------- 

174 dayObs : `str` 

175 The dayObs as a string. 

176 """ 

177 assert isinstance(dayObs, int) 

178 dStr = str(dayObs) 

179 assert len(dStr) == 8 

180 return '-'.join([dStr[0:4], dStr[4:6], dStr[6:8]]) 

181 

182 

183def dayObsSeqNumToVisitId(dayObs, seqNum): 

184 """Get the visit id for a given dayObs/seqNum. 

185 

186 Parameters 

187 ---------- 

188 dayObs : `int` 

189 The dayObs. 

190 seqNum : `int` 

191 The seqNum. 

192 

193 Returns 

194 ------- 

195 visitId : `int` 

196 The visitId. 

197 

198 Notes 

199 ----- 

200 TODO: Remove this horrible hack once DM-30948 makes this possible 

201 programatically/via the butler. 

202 """ 

203 if dayObs < 19700101 or dayObs > 35000101: 

204 raise ValueError(f'dayObs value {dayObs} outside plausible range') 

205 return int(f"{dayObs}{seqNum:05}") 

206 

207 

208def getImageStats(exp): 

209 """Calculate a grab-bag of stats for an image. Must remain fast. 

210 

211 Parameters 

212 ---------- 

213 exp : `lsst.afw.image.Exposure` 

214 The input exposure. 

215 

216 Returns 

217 ------- 

218 stats : `lsst.pipe.base.Struct` 

219 A container with attributes containing measurements and statistics 

220 for the image. 

221 """ 

222 result = pipeBase.Struct() 

223 

224 vi = exp.visitInfo 

225 expTime = vi.exposureTime 

226 md = exp.getMetadata() 

227 

228 obj = vi.object 

229 mjd = vi.getDate().get() 

230 result.object = obj 

231 result.mjd = mjd 

232 

233 fullFilterString = exp.filter.physicalLabel 

234 filt = fullFilterString.split(FILTER_DELIMITER)[0] 

235 grating = fullFilterString.split(FILTER_DELIMITER)[1] 

236 

237 airmass = vi.getBoresightAirmass() 

238 rotangle = vi.getBoresightRotAngle().asDegrees() 

239 

240 azAlt = vi.getBoresightAzAlt() 

241 az = azAlt[0].asDegrees() 

242 el = azAlt[1].asDegrees() 

243 

244 result.expTime = expTime 

245 result.filter = filt 

246 result.grating = grating 

247 result.airmass = airmass 

248 result.rotangle = rotangle 

249 result.az = az 

250 result.el = el 

251 result.focus = md.get('FOCUSZ') 

252 

253 data = exp.image.array 

254 result.maxValue = np.max(data) 

255 

256 peak, uniquePeak, otherPeaks = argMax2d(data) 

257 result.maxPixelLocation = peak 

258 result.multipleMaxPixels = uniquePeak 

259 

260 result.nBadPixels = countPixels(exp.maskedImage, 'BAD') 

261 result.nSatPixels = countPixels(exp.maskedImage, 'SAT') 

262 result.percentile99 = np.percentile(data, 99) 

263 result.percentile9999 = np.percentile(data, 99.99) 

264 

265 sctrl = afwMath.StatisticsControl() 

266 sctrl.setNumSigmaClip(5) 

267 sctrl.setNumIter(2) 

268 statTypes = afwMath.MEANCLIP | afwMath.STDEVCLIP 

269 stats = afwMath.makeStatistics(exp.maskedImage, statTypes, sctrl) 

270 std, stderr = stats.getResult(afwMath.STDEVCLIP) 

271 mean, meanerr = stats.getResult(afwMath.MEANCLIP) 

272 

273 result.clippedMean = mean 

274 result.clippedStddev = std 

275 

276 return result 

277 

278 

279def detectObjectsInExp(exp, nSigma=10, nPixMin=10, grow=0): 

280 """Quick and dirty object detection for an expsure. 

281 

282 Return the footPrintSet for the objects in a preferably-postISR exposure. 

283 

284 Parameters 

285 ---------- 

286 exp : `lsst.afw.image.Exposure` 

287 The exposure to detect objects in. 

288 nSigma : `float` 

289 The number of sigma for detection. 

290 nPixMin : `int` 

291 The minimum number of pixels in an object for detection. 

292 grow : `int` 

293 The number of pixels to grow the footprint by after detection. 

294 

295 Returns 

296 ------- 

297 footPrintSet : `lsst.afw.detection.FootprintSet` 

298 The set of footprints in the image. 

299 """ 

300 median = np.nanmedian(exp.image.array) 

301 exp.image -= median 

302 

303 threshold = afwDetect.Threshold(nSigma, afwDetect.Threshold.STDEV) 

304 footPrintSet = afwDetect.FootprintSet(exp.getMaskedImage(), threshold, "DETECTED", nPixMin) 

305 if grow > 0: 

306 isotropic = True 

307 footPrintSet = afwDetect.FootprintSet(footPrintSet, grow, isotropic) 

308 

309 exp.image += median # add back in to leave background unchanged 

310 return footPrintSet 

311 

312 

313def fluxesFromFootprints(footprints, parentImage, subtractImageMedian=False): 

314 """Calculate the flux from a set of footprints, given the parent image, 

315 optionally subtracting the whole-image median from each pixel as a very 

316 rough background subtraction. 

317 

318 Parameters 

319 ---------- 

320 footprints : `lsst.afw.detection.FootprintSet` or 

321 `lsst.afw.detection.Footprint` or 

322 `iterable` of `lsst.afw.detection.Footprint` 

323 The footprints to measure. 

324 parentImage : `lsst.afw.image.Image` 

325 The parent image. 

326 subtractImageMedian : `bool`, optional 

327 Subtract a whole-image median from each pixel in the footprint when 

328 summing as a very crude background subtraction. Does not change the 

329 original image. 

330 

331 Returns 

332 ------- 

333 fluxes : `list` of `float` 

334 The fluxes for each footprint. 

335 

336 Raises 

337 ------ 

338 TypeError : raise for unsupported types. 

339 """ 

340 median = 0 

341 if subtractImageMedian: 

342 median = np.nanmedian(parentImage.array) 

343 

344 # poor person's single dispatch 

345 badTypeMsg = ("This function works with FootprintSets, single Footprints, and iterables of Footprints. " 

346 f"Got {type(footprints)}: {footprints}") 

347 if isinstance(footprints, FootprintSet): 

348 footprints = footprints.getFootprints() 

349 elif isinstance(footprints, Iterable): 

350 if not isinstance(footprints[0], Footprint): 

351 raise TypeError(badTypeMsg) 

352 elif isinstance(footprints, Footprint): 

353 footprints = [footprints] 

354 else: 

355 raise TypeError(badTypeMsg) 

356 

357 return np.array([fluxFromFootprint(fp, parentImage, backgroundValue=median) for fp in footprints]) 

358 

359 

360def fluxFromFootprint(footprint, parentImage, backgroundValue=0): 

361 """Calculate the flux from a footprint, given the parent image, optionally 

362 subtracting a single value from each pixel as a very rough background 

363 subtraction, e.g. the image median. 

364 

365 Parameters 

366 ---------- 

367 footprint : `lsst.afw.detection.Footprint` 

368 The footprint to measure. 

369 parentImage : `lsst.afw.image.Image` 

370 Image containing the footprint. 

371 backgroundValue : `bool`, optional 

372 The value to subtract from each pixel in the footprint when summing 

373 as a very crude background subtraction. Does not change the original 

374 image. 

375 

376 Returns 

377 ------- 

378 flux : `float` 

379 The flux in the footprint 

380 """ 

381 if backgroundValue: # only do the subtraction if non-zero for speed 

382 xy0 = parentImage.getBBox().getMin() 

383 return footprint.computeFluxFromArray(parentImage.array - backgroundValue, xy0) 

384 return footprint.computeFluxFromImage(parentImage) 

385 

386 

387def humanNameForCelestialObject(objName): 

388 """Returns a list of all human names for obj, or [] if none are found. 

389 

390 Parameters 

391 ---------- 

392 objName : `str` 

393 The/a name of the object. 

394 

395 Returns 

396 ------- 

397 names : `list` of `str` 

398 The names found for the object 

399 """ 

400 from astroquery.simbad import Simbad 

401 results = [] 

402 try: 

403 simbadResult = Simbad.query_objectids(objName) 

404 for row in simbadResult: 

405 if row['ID'].startswith('NAME'): 

406 results.append(row['ID'].replace('NAME ', '')) 

407 return results 

408 except Exception: 

409 return [] # same behavior as for found but un-named objects 

410 

411 

412def _getAltAzZenithsFromSeqNum(butler, dayObs, seqNumList): 

413 """Get the alt, az and zenith angle for the seqNums of a given dayObs. 

414 

415 Parameters 

416 ---------- 

417 butler : `lsst.daf.butler.Butler` 

418 The butler to query. 

419 dayObs : `int` 

420 The dayObs. 

421 seqNumList : `list` of `int` 

422 The seqNums for which to return the alt, az and zenith 

423 

424 Returns 

425 ------- 

426 azimuths : `list` of `float` 

427 List of the azimuths for each seqNum 

428 elevations : `list` of `float` 

429 List of the elevations for each seqNum 

430 zeniths : `list` of `float` 

431 List of the zenith angles for each seqNum 

432 """ 

433 azimuths, elevations, zeniths = [], [], [] 

434 for seqNum in seqNumList: 

435 md = butler.get('raw.metadata', day_obs=dayObs, seq_num=seqNum, detector=0) 

436 obsInfo = ObservationInfo(md) 

437 alt = obsInfo.altaz_begin.alt.value 

438 az = obsInfo.altaz_begin.az.value 

439 elevations.append(alt) 

440 zeniths.append(90-alt) 

441 azimuths.append(az) 

442 return azimuths, elevations, zeniths 

443 

444 

445def getFocusFromHeader(exp): 

446 """Get the raw focus value from the header. 

447 

448 Parameters 

449 ---------- 

450 exp : `lsst.afw.image.exposure` 

451 The exposure. 

452 

453 Returns 

454 ------- 

455 focus : `float` or `None` 

456 The focus value if found, else ``None``. 

457 """ 

458 md = exp.getMetadata() 

459 if 'FOCUSZ' in md: 

460 return md['FOCUSZ'] 

461 return None 

462 

463 

464def checkStackSetup(): 

465 """Check which weekly tag is being used and which local packages are setup. 

466 

467 Designed primarily for use in notbooks/observing, this prints the weekly 

468 tag(s) are setup for lsst_distrib, and lists any locally setup packages and 

469 the path to each. 

470 

471 Notes 

472 ----- 

473 Uses print() instead of logger messages as this should simply print them 

474 without being vulnerable to any log messages potentially being diverted. 

475 """ 

476 packages = packageUtils.getEnvironmentPackages(include_all=True) 

477 

478 lsstDistribHashAndTags = packages['lsst_distrib'] # looks something like 'g4eae7cb9+1418867f (w_2022_13)' 

479 lsstDistribTags = lsstDistribHashAndTags.split()[1] 

480 if len(lsstDistribTags.split()) == 1: 

481 tag = lsstDistribTags.replace('(', '') 

482 tag = tag.replace(')', '') 

483 print(f"You are running {tag} of lsst_distrib") 

484 else: # multiple weekly tags found for lsst_distrib! 

485 print(f'The version of lsst_distrib you have is compatible with: {lsstDistribTags}') 

486 

487 localPackages = [] 

488 localPaths = [] 

489 for package, tags in packages.items(): 

490 if tags.startswith('LOCAL:'): 

491 path = tags.split('LOCAL:')[1] 

492 path = path.split('@')[0] # don't need the git SHA etc 

493 localPaths.append(path) 

494 localPackages.append(package) 

495 

496 if localPackages: 

497 print("\nLocally setup packages:") 

498 print("-----------------------") 

499 maxLen = max(len(package) for package in localPackages) 

500 for package, path in zip(localPackages, localPaths): 

501 print(f"{package:<{maxLen}s} at {path}") 

502 else: 

503 print("\nNo locally setup packages (using a vanilla stack)") 

504 

505 

506def setupLogging(longlog=False): 

507 """Setup logging in the same way as one would get from pipetask run. 

508 

509 Code that isn't run through the butler CLI defaults to WARNING level 

510 messages and no logger names. This sets the behaviour to follow whatever 

511 the pipeline default is, currently 

512 <logger_name> <level>: <message> e.g. 

513 lsst.isr INFO: Masking defects. 

514 """ 

515 CliLog.initLog(longlog=longlog) 

516 

517 

518def getCurrentDayObs_datetime(): 

519 """Get the current day_obs - the observatory rolls the date over at UTC-12 

520 

521 Returned as datetime.date(2022, 4, 28) 

522 """ 

523 utc = gettz("UTC") 

524 nowUtc = datetime.datetime.now().astimezone(utc) 

525 offset = datetime.timedelta(hours=-12) 

526 dayObs = (nowUtc + offset).date() 

527 return dayObs 

528 

529 

530def getCurrentDayObs_int(): 

531 """Return the current dayObs as an int in the form 20220428 

532 """ 

533 return int(getCurrentDayObs_datetime().strftime("%Y%m%d")) 

534 

535 

536def getCurrentDayObs_humanStr(): 

537 """Return the current dayObs as a string in the form '2022-04-28' 

538 """ 

539 return dayObsIntToString(getCurrentDayObs_int()) 

540 

541 

542def getSite(): 

543 """Returns where the code is running. 

544 

545 Returns 

546 ------- 

547 location : `str` 

548 One of ['tucson', 'summit', 'base', 'staff-rsp', 'rubin-devl'] 

549 

550 Raises 

551 ------ 

552 ValueError 

553 Raised if location cannot be determined. 

554 """ 

555 # All nublado instances guarantee that EXTERNAL_URL is set and uniquely 

556 # identifies it. 

557 location = os.getenv('EXTERNAL_INSTANCE_URL', "") 

558 if location == "https://tucson-teststand.lsst.codes": 558 ↛ 559line 558 didn't jump to line 559, because the condition on line 558 was never true

559 return 'tucson' 

560 elif location == "https://summit-lsp.lsst.codes": 560 ↛ 561line 560 didn't jump to line 561, because the condition on line 560 was never true

561 return 'summit' 

562 elif location == "https://base-lsp.lsst.codes": 562 ↛ 563line 562 didn't jump to line 563, because the condition on line 562 was never true

563 return 'base' 

564 elif location == "https://usdf-rsp.slac.stanford.edu": 564 ↛ 565line 564 didn't jump to line 565, because the condition on line 564 was never true

565 return 'staff-rsp' 

566 

567 # if no EXTERNAL_URL, try HOSTNAME to see if we're on the dev nodes 

568 # it is expected that this will be extensible to SLAC 

569 hostname = os.getenv('HOSTNAME', "") 

570 if hostname.startswith('sdfrome'): 570 ↛ 571line 570 didn't jump to line 571, because the condition on line 570 was never true

571 return 'rubin-devl' 

572 

573 # we have failed 

574 raise ValueError('Location could not be determined') 

575 

576 

577def getAltAzFromSkyPosition(skyPos, visitInfo, doCorrectRefraction=False, 

578 wavelength=500.0, 

579 pressureOverride=None, 

580 temperatureOverride=None, 

581 relativeHumidityOverride=None, 

582 ): 

583 """Get the alt/az from the position on the sky and the time and location 

584 of the observation. 

585 

586 The temperature, pressure and relative humidity are taken from the 

587 visitInfo by default, but can be individually overridden as needed. It 

588 should be noted that the visitInfo never contains a nominal wavelength, and 

589 so this takes a default value of 500nm. 

590 

591 Parameters 

592 ---------- 

593 skyPos : `lsst.geom.SpherePoint` 

594 The position on the sky. 

595 visitInfo : `lsst.afw.image.VisitInfo` 

596 The visit info containing the time of the observation. 

597 doCorrectRefraction : `bool`, optional 

598 Correct for the atmospheric refraction? 

599 wavelength : `float`, optional 

600 The nominal wavelength in nanometers (e.g. 500.0), as a float. 

601 pressureOverride : `float`, optional 

602 The pressure, in bars (e.g. 0.770), to override the value supplied in 

603 the visitInfo, as a float. 

604 temperatureOverride : `float`, optional 

605 The temperature, in Celsius (e.g. 10.0), to override the value supplied 

606 in the visitInfo, as a float. 

607 relativeHumidityOverride : `float`, optional 

608 The relativeHumidity in the range 0..1 (i.e. not as a percentage), to 

609 override the value supplied in the visitInfo, as a float. 

610 

611 Returns 

612 ------- 

613 alt : `lsst.geom.Angle` 

614 The altitude. 

615 az : `lsst.geom.Angle` 

616 The azimuth. 

617 """ 

618 skyLocation = SkyCoord(skyPos.getRa().asRadians(), skyPos.getDec().asRadians(), unit=u.rad) 

619 long = visitInfo.observatory.getLongitude() 

620 lat = visitInfo.observatory.getLatitude() 

621 ele = visitInfo.observatory.getElevation() 

622 earthLocation = EarthLocation.from_geodetic(long.asDegrees(), lat.asDegrees(), ele) 

623 

624 refractionKwargs = {} 

625 if doCorrectRefraction: 

626 # wavelength is never supplied in the visitInfo so always take this 

627 wavelength = wavelength * u.nm 

628 

629 if pressureOverride: 

630 pressure = pressureOverride 

631 else: 

632 pressure = visitInfo.weather.getAirPressure() 

633 # ObservationInfos (which are the "source of truth" use pascals) so 

634 # convert from pascals to bars 

635 pressure /= 100000.0 

636 pressure = pressure*u.bar 

637 

638 if temperatureOverride: 

639 temperature = temperatureOverride 

640 else: 

641 temperature = visitInfo.weather.getAirTemperature() 

642 temperature = temperature*u.deg_C 

643 

644 if relativeHumidityOverride: 

645 relativeHumidity = relativeHumidityOverride 

646 else: 

647 relativeHumidity = visitInfo.weather.getHumidity() / 100.0 # this is in percent 

648 relativeHumidity = relativeHumidity*u.deg_C 

649 

650 refractionKwargs = dict(pressure=pressure, 

651 temperature=temperature, 

652 relative_humidity=relativeHumidity, 

653 obswl=wavelength) 

654 

655 # must go via astropy.Time because dafBase.dateTime.DateTime contains 

656 # the timezone, but going straight to visitInfo.date.toPython() loses this. 

657 obsTime = Time(visitInfo.date.toPython(), scale='tai') 

658 altAz = AltAz(obstime=obsTime, 

659 location=earthLocation, 

660 **refractionKwargs) 

661 

662 obsAltAz = skyLocation.transform_to(altAz) 

663 alt = geom.Angle(obsAltAz.alt.degree, geom.degrees) 

664 az = geom.Angle(obsAltAz.az.degree, geom.degrees) 

665 

666 return alt, az 

667 

668 

669def getExpPositionOffset(exp1, exp2, useWcs=True, allowDifferentPlateScales=False): 

670 """Get the change in sky position between two exposures. 

671 

672 Given two exposures, calculate the offset on the sky between the images. 

673 If useWcs then use the (fitted or unfitted) skyOrigin from their WCSs, and 

674 calculate the alt/az from the observation times, otherwise use the nominal 

675 values in the exposures' visitInfos. Note that if using the visitInfo 

676 values that for a given pointing the ra/dec will be ~identical, regardless 

677 of whether astrometric fitting has been performed. 

678 

679 Values are given as exp1-exp2. 

680 

681 Parameters 

682 ---------- 

683 exp1 : `lsst.afw.image.Exposure` 

684 The first exposure. 

685 exp2 : `lsst.afw.image.Exposure` 

686 The second exposure. 

687 useWcs : `bool` 

688 Use the WCS for the ra/dec and alt/az if True, else use the nominal/ 

689 boresight values from the exposures' visitInfos. 

690 allowDifferentPlateScales : `bool`, optional 

691 Use to disable checking that plate scales are the same. Generally, 

692 differing plate scales would indicate an error, but where blind-solving 

693 has been undertaken during commissioning plate scales can be different 

694 enough to warrant setting this to ``True``. 

695 

696 Returns 

697 ------- 

698 offsets : `lsst.pipe.base.Struct` 

699 A struct containing the offsets: 

700 ``deltaRa`` 

701 The diference in ra (`lsst.geom.Angle`) 

702 ``deltaDec`` 

703 The diference in dec (`lsst.geom.Angle`) 

704 ``deltaAlt`` 

705 The diference in alt (`lsst.geom.Angle`) 

706 ``deltaAz`` 

707 The diference in az (`lsst.geom.Angle`) 

708 ``deltaPixels`` 

709 The diference in pixels (`float`) 

710 """ 

711 

712 wcs1 = exp1.getWcs() 

713 wcs2 = exp2.getWcs() 

714 pixScaleArcSec = wcs1.getPixelScale().asArcseconds() 

715 if not allowDifferentPlateScales: 

716 assert np.isclose(pixScaleArcSec, wcs2.getPixelScale().asArcseconds()), \ 

717 "Pixel scales in the exposures differ." 

718 

719 if useWcs: 

720 p1 = wcs1.getSkyOrigin() 

721 p2 = wcs2.getSkyOrigin() 

722 alt1, az1 = getAltAzFromSkyPosition(p1, exp1.getInfo().getVisitInfo()) 

723 alt2, az2 = getAltAzFromSkyPosition(p2, exp2.getInfo().getVisitInfo()) 

724 ra1 = p1[0] 

725 ra2 = p2[0] 

726 dec1 = p1[1] 

727 dec2 = p2[1] 

728 else: 

729 az1 = exp1.visitInfo.boresightAzAlt[0] 

730 az2 = exp2.visitInfo.boresightAzAlt[0] 

731 alt1 = exp1.visitInfo.boresightAzAlt[1] 

732 alt2 = exp2.visitInfo.boresightAzAlt[1] 

733 

734 ra1 = exp1.visitInfo.boresightRaDec[0] 

735 ra2 = exp2.visitInfo.boresightRaDec[0] 

736 dec1 = exp1.visitInfo.boresightRaDec[1] 

737 dec2 = exp2.visitInfo.boresightRaDec[1] 

738 

739 p1 = exp1.visitInfo.boresightRaDec 

740 p2 = exp2.visitInfo.boresightRaDec 

741 

742 angular_offset = p1.separation(p2).asArcseconds() 

743 deltaPixels = angular_offset / pixScaleArcSec 

744 

745 ret = pipeBase.Struct(deltaRa=(ra1-ra2).wrapNear(geom.Angle(0.0)), 

746 deltaDec=dec1-dec2, 

747 deltaAlt=alt1-alt2, 

748 deltaAz=(az1-az2).wrapNear(geom.Angle(0.0)), 

749 deltaPixels=deltaPixels 

750 ) 

751 

752 return ret 

753 

754 

755def starTrackerFileToExposure(filename, logger=None): 

756 """Read the exposure from the file and set the wcs from the header. 

757 

758 Parameters 

759 ---------- 

760 filename : `str` 

761 The full path to the file. 

762 logger : `logging.Logger`, optional 

763 The logger to use for errors, created if not supplied. 

764 

765 Returns 

766 ------- 

767 exp : `lsst.afw.image.Exposure` 

768 The exposure. 

769 """ 

770 if not logger: 

771 logger = logging.getLogger(__name__) 

772 exp = afwImage.ExposureF(filename) 

773 try: 

774 wcs = genericCameraHeaderToWcs(exp) 

775 exp.setWcs(wcs) 

776 except Exception as e: 

777 logger.warning(f"Failed to set wcs from header: {e}") 

778 

779 # for some reason the date isn't being set correctly 

780 # DATE-OBS is present in the original header, but it's being 

781 # stripped out and somehow not set (plus it doesn't give the midpoint 

782 # of the exposure), so set it manually from the midpoint here 

783 try: 

784 md = exp.getMetadata() 

785 begin = datetime.datetime.fromisoformat(md['DATE-BEG']) 

786 end = datetime.datetime.fromisoformat(md['DATE-END']) 

787 duration = end - begin 

788 mid = begin + duration/2 

789 newTime = dafBase.DateTime(mid.isoformat(), dafBase.DateTime.Timescale.TAI) 

790 newVi = exp.visitInfo.copyWith(date=newTime) 

791 exp.info.setVisitInfo(newVi) 

792 except Exception as e: 

793 logger.warning(f"Failed to set date from header: {e}") 

794 

795 return exp 

796 

797 

798def obsInfoToDict(obsInfo): 

799 """Convert an ObservationInfo to a dict. 

800 

801 Parameters 

802 ---------- 

803 obsInfo : `astro_metadata_translator.ObservationInfo` 

804 The ObservationInfo to convert. 

805 

806 Returns 

807 ------- 

808 obsInfoDict : `dict` 

809 The ObservationInfo as a dict. 

810 """ 

811 return {prop: getattr(obsInfo, prop) for prop in obsInfo.all_properties.keys()} 

812 

813 

814def getFieldNameAndTileNumber(field, warn=True, logger=None): 

815 """Get the tile name and number of an observed field. 

816 

817 It is assumed to always be appended, with an underscore, to the rest of the 

818 field name. Returns the name and number as a tuple, or the name unchanged 

819 if no tile number is found. 

820 

821 Parameters 

822 ---------- 

823 field : `str` 

824 The name of the field 

825 

826 Returns 

827 ------- 

828 fieldName : `str` 

829 The name of the field without the trailing tile number, if present. 

830 tileNum : `int` 

831 The number of the tile, as an integer, or ``None`` if not found. 

832 """ 

833 if warn and not logger: 

834 logger = logging.getLogger('lsst.summit.utils.utils.getFieldNameAndTileNumber') 

835 

836 if '_' not in field: 

837 if warn: 

838 logger.warning(f"Field {field} does not contain an underscore," 

839 " so cannot determine the tile number.") 

840 return field, None 

841 

842 try: 

843 fieldParts = field.split("_") 

844 fieldNum = int(fieldParts[-1]) 

845 except ValueError: 

846 if warn: 

847 logger.warning(f"Field {field} does not contain only an integer after the final underscore" 

848 " so cannot determine the tile number.") 

849 return field, None 

850 

851 return "_".join(fieldParts[:-1]), fieldNum 

852 

853 

854def getAirmassSeeingCorrection(airmass): 

855 """Get the correction factor for seeing due to airmass. 

856 

857 Parameters 

858 ---------- 

859 airmass : `float` 

860 The airmass, greater than or equal to 1. 

861 

862 Returns 

863 ------- 

864 correctionFactor : `float` 

865 The correction factor to apply to the seeing. 

866 

867 Raises 

868 ------ 

869 ValueError raised for unphysical airmasses. 

870 """ 

871 if airmass < 1: 

872 raise ValueError(f"Invalid airmass: {airmass}") 

873 return airmass**(-0.6) 

874 

875 

876def getFilterSeeingCorrection(filterName): 

877 """Get the correction factor for seeing due to a filter. 

878 

879 Parameters 

880 ---------- 

881 filterName : `str` 

882 The name of the filter, e.g. 'SDSSg_65mm'. 

883 

884 Returns 

885 ------- 

886 correctionFactor : `float` 

887 The correction factor to apply to the seeing. 

888 

889 Raises 

890 ------ 

891 ValueError raised for unknown filters. 

892 """ 

893 match filterName: 

894 case 'SDSSg_65mm': 

895 return (477./500.)**0.2 

896 case 'SDSSr_65mm': 

897 return (623./500.)**0.2 

898 case 'SDSSi_65mm': 

899 return (762./500.)**0.2 

900 case _: 

901 raise ValueError(f"Unknown filter name: {filterName}") 

902 

903 

904def getCdf(data, scale): 

905 """Return an approximate cumulative distribution function scaled to 

906 the [0, scale] range. 

907 

908 Parameters 

909 ---------- 

910 data : `np.array` 

911 The input data. 

912 scale : `int` 

913 The scaling range of the output. 

914 

915 Returns 

916 ------- 

917 cdf : `np.array` of `int` 

918 A monotonically increasing sequence that represents a scaled 

919 cumulative distribution function, starting with the value at 

920 minVal, then at (minVal + 1), and so on. 

921 minVal : `float` 

922 An integer smaller than the minimum value in the input data. 

923 maxVal : `float` 

924 An integer larger than the maximum value in the input data. 

925 """ 

926 flatData = data.ravel() 

927 size = flatData.size - np.count_nonzero(np.isnan(flatData)) 

928 

929 minVal = np.floor(np.nanmin(flatData)) 

930 maxVal = np.ceil(np.nanmax(flatData)) + 1.0 

931 

932 hist, binEdges = np.histogram( 

933 flatData, bins=int(maxVal - minVal), range=(minVal, maxVal) 

934 ) 

935 

936 cdf = (scale*np.cumsum(hist)/size).astype(np.int64) 

937 return cdf, minVal, maxVal 

938 

939 

940def getQuantiles(data, nColors): 

941 """Get a set of boundaries that equally distribute data into 

942 nColors intervals. The output can be used to make a colormap 

943 of nColors colors. 

944 

945 This is equivalent to using the numpy function: 

946 np.quantile(data, np.linspace(0, 1, nColors + 1)) 

947 but with a coarser precision, yet sufficient for our use case. 

948 This implementation gives a speed-up. 

949 

950 Parameters 

951 ---------- 

952 data : `np.array` 

953 The input image data. 

954 nColors : `int` 

955 The number of intervals to distribute data into. 

956 

957 Returns 

958 ------- 

959 boundaries: `list` of `float` 

960 A monotonically increasing sequence of size (nColors + 1). 

961 These are the edges of nColors intervals. 

962 """ 

963 cdf, minVal, maxVal = getCdf(data, nColors) 

964 boundaries = np.asarray( 

965 [np.argmax(cdf >= i) + minVal for i in range(nColors)] + [maxVal] 

966 ) 

967 return boundaries 

968 

969 

970def digitizeData(data, nColors=256): 

971 """ 

972 Scale data into nColors using its cumulative distribution function. 

973 

974 Parameters 

975 ---------- 

976 data : `np.array` 

977 The input image data. 

978 nColors : `int` 

979 The number of intervals to distribute data into. 

980 

981 Returns 

982 ------- 

983 data: `np.array` of `int` 

984 Scaled data in the [0, nColors - 1] range. 

985 """ 

986 cdf, minVal, maxVal = getCdf(data, nColors - 1) 

987 bins = np.floor((data - minVal)).astype(np.int64) 

988 return cdf[bins]