Coverage for tests/test_deferredCharge.py: 42%
33 statements
« prev ^ index » next coverage.py v6.4.2, created at 2022-08-05 09:09 +0000
« prev ^ index » next coverage.py v6.4.2, created at 2022-08-05 09:09 +0000
1#
2# LSST Data Management System
3#
4# Copyright 2008-2017 AURA/LSST.
5#
6# This product includes software developed by the
7# LSST Project (http://www.lsst.org/).
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the LSST License Statement and
20# the GNU General Public License along with this program. If not,
21# see <https://www.lsstcorp.org/LegalNotices/>.
22#
23"""Test cases for lsst.cp.pipe.deferredCharge."""
25import unittest
27import lsst.utils
28import lsst.utils.tests
30import lsst.cp.pipe as cpPipe
31from lsst.ip.isr import IsrMock
34class CpCtiSolveTaskTestCase(lsst.utils.tests.TestCase):
35 """A test case for the deferred charge/CTI solve task."""
37 def setUp(self):
38 self.camera = IsrMock().getCamera()
40 overscanMeansA = [7.18039751e-01, 4.56550479e-01, 4.14261669e-01, 2.88099229e-01, -2.34310962e-02,
41 -4.59854975e-02, -1.14491098e-02, 5.19846082e-02, 2.05635265e-01, 1.25147207e-02,
42 9.00449380e-02, -2.39106059e-01, -1.52413145e-01, 4.63459678e-02, 1.85195580e-01,
43 -1.58051759e-01, -8.76842241e-04, -5.09192124e-02, 2.58496821e-01, 2.54267782e-01,
44 -1.37611866e-01, 3.35322201e-01, 1.04846083e-01, -2.16551736e-01, -8.82746354e-02,
45 -1.00256450e-01, 2.73297966e-01, -4.52805981e-02, 3.40960979e-01, 7.80628920e-02,
46 -2.90697180e-02, -6.99492991e-02, -1.06599867e-01, 6.89002723e-02, 1.46290688e-02,
47 1.19647197e-01, -1.54527843e-01, 9.35689881e-02, -1.06599934e-01, -2.13166289e-02,
48 9.35688764e-02, -1.19286761e-01, 1.18098985e-02, -3.69616691e-03, -6.14914447e-02,
49 -5.81059000e-03, 9.42736641e-02, 3.92978266e-02, -1.55937240e-01, 3.76202404e-01,
50 -1.13648064e-01, 1.71803936e-01, 6.17138995e-03, 8.22918862e-02, -2.84214199e-01,
51 -2.99097435e-03, -1.31973490e-01, -2.84214795e-01, -2.99140741e-03, -3.76546055e-01,
52 5.97376414e-02, -1.91883057e-01, -1.34087920e-01, -3.23684871e-01]
53 overscanMeansB = [1.50365152e+01, 4.43178511e+00, 2.66550946e+00, 1.67382801e+00, 1.10997069e+00,
54 8.89361799e-01, 4.66469795e-01, 6.10956728e-01, 6.67343795e-01, 5.22854805e-01,
55 -1.15006611e-01, 2.67710119e-01, 2.05686077e-01, 1.84541523e-01, 8.65717679e-02,
56 5.51738311e-03, 2.35288814e-01, 3.45944524e-01, 7.81139359e-02, 1.52119964e-01,
57 2.02162191e-01, 3.44150960e-02, -2.86277920e-01, 1.43662184e-01, 3.21276844e-01,
58 -6.21452965e-02, 8.58670697e-02, -1.63320359e-02, -1.07958235e-01, -1.60820082e-01,
59 -2.19705645e-02, -1.55181482e-01, -2.39055425e-01, -2.75705636e-01, 6.33126274e-02,
60 -5.50971478e-02, -2.42579415e-01, -9.87957790e-02, 1.08421087e-01, -1.12892322e-01,
61 1.89090632e-02, -1.53086300e-03, -2.18615308e-01, -2.19320312e-01, 9.22102109e-02,
62 -4.87535410e-02, -1.81964979e-01, -4.17055413e-02, -4.24422681e-01, -1.96061105e-01,
63 -1.35127297e-02, -1.77031055e-01, -2.30597332e-01, -4.01868790e-01, -4.18784261e-01,
64 -3.75085384e-01, -3.49007100e-01, -1.77735761e-01, -7.41272718e-02, -1.92537069e-01,
65 2.46565759e-01, -3.44777972e-01, -2.85573214e-01, -2.34121397e-01]
66 overscanMeansC = [0.212578110, 0.107817403, -0.122200218, -0.0089812368, -0.067990060, 0.040077099,
67 -0.021402006, 0.090923088, -0.099587158, 0.274797124, -0.016930788, 0.045007070,
68 -0.00379911056, -0.16088248, 0.055911896, 0.0601755001, -0.046872945, 0.210018355,
69 0.081641635, -0.046147249, -0.0059020276, 0.108368757, -0.033966731, -0.0058644798,
70 -0.075746922, -0.203826510, 0.12620401, -0.0156685544, -0.09631182, 0.089754454,
71 0.03789926, 0.0304515115, -0.082173715, -0.061332140, -0.24894494, -0.155137551,
72 -0.073825312, 0.24538413, -0.069597074, 0.192338801, -0.0539746876, -0.184556000,
73 -0.173069382, -0.209975778, 0.086679191, 0.016299034, -0.0094125706, -0.100099911,
74 0.061981365, 0.086250364, 0.209128404, -0.0067993622, 0.171072270, -0.29266333,
75 0.075172274, -0.29375612, -0.13377650, 0.0125964781, -0.124991264, 0.226516831,
76 0.128244484, -0.05019844, -0.149249925, -0.1557398]
77 overscanMeansD = [4.0867248, 1.43194193, 0.95319573, 0.43219185, 0.53112239, 0.28648, 0.323903486,
78 0.27622156, 0.26031138, 0.144442975, 0.0149878587, 0.062969929, 0.018541051,
79 -0.237687056, 0.22804558, 0.0600504708, 0.140250022, -0.137477808, 0.119911710,
80 0.03770870, -0.20021377, 0.187175400, 0.0168790129, -0.110724371, 0.099311580,
81 0.0079969534, -0.157593577, -0.178876067, -0.214948580, -0.11354382, 0.148154530,
82 -0.056012520, 0.11851939, 0.067902033, 0.18970736, -0.181487703, -0.0101017127,
83 0.100998570, -0.0309096733, -0.034450136, -0.066357072, -0.058662959, 0.146185921,
84 -0.218474021, -0.173691633, 0.055349625, -0.178158524, -0.012917378, -0.166576555,
85 -0.063862754, 0.113169933, -0.33518338, -0.074239500, 0.22262230, -0.066653975,
86 -0.200271016, -0.013275277, 0.100596499, -0.092528954, 0.0339541714, 0.113119135,
87 -0.150720824, 0.038237873, 0.17603852613429813]
89 self.inputMeasurements = [
90 {'CTI': {'C:0,0': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
91 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
92 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
93 'C:0,1': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
94 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
95 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
96 'C:0,2': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
97 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
98 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
99 'C:0,3': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
100 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
101 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
102 'C:1,0': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
103 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
104 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
105 'C:1,1': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
106 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
107 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
108 'C:1,2': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
109 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
110 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
111 'C:1,3': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02,
112 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA,
113 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}},
114 {'CTI': {'C:0,0': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
115 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
116 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
117 'C:0,1': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
118 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
119 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
120 'C:0,2': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
121 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
122 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
123 'C:0,3': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
124 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
125 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
126 'C:1,0': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
127 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
128 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
129 'C:1,1': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
130 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
131 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
132 'C:1,2': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
133 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
134 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
135 'C:1,3': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04,
136 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB,
137 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}},
139 {'CTI': {'C:0,0': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
140 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
141 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
142 'C:0,1': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
143 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
144 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
145 'C:0,2': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
146 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
147 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
148 'C:0,3': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
149 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
150 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
151 'C:1,0': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
152 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
153 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
154 'C:1,1': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
155 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
156 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
157 'C:1,2': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
158 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
159 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
160 'C:1,3': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415,
161 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC,
162 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}},
163 {'CTI': {'C:0,0': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
164 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
165 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
166 'C:0,1': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
167 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
168 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
169 'C:0,2': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
170 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
171 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
172 'C:0,3': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
173 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
174 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
175 'C:1,0': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
176 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
177 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
178 'C:1,1': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
179 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
180 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
181 'C:1,2': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
182 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
183 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]},
184 'C:1,3': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875,
185 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD,
186 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}}]
187 self.inputDims = [{'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101200433},
188 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101300154},
189 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101300004},
190 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101200333}]
192 self.task = cpPipe.CpCtiSolveTask()
194 def test_task(self):
195 """A test for the main CpCtiSolveTask.
197 This should excercise most of the new code.
198 """
199 results = self.task.run(self.inputMeasurements, self.camera, self.inputDims)
201 calib = results.outputCalib
202 # Check that the result matches expectation.
203 self.assertAlmostEqual(calib.globalCti['C:0,0'], 1.0e-7, 4)
204 self.assertAlmostEqual(calib.driftScale['C:0,0'], 1.8105e-4, 4)
205 self.assertAlmostEqual(calib.decayTime['C:0,0'], 3.0809, 4)
207 # Check that all amps are equal.
208 for ampName in calib.globalCti.keys():
209 self.assertEqual(calib.globalCti['C:0,0'], calib.globalCti[ampName])
210 self.assertEqual(calib.driftScale['C:0,0'], calib.driftScale[ampName])
211 self.assertEqual(calib.decayTime['C:0,0'], calib.decayTime[ampName])
214class TestMemory(lsst.utils.tests.MemoryTestCase):
215 pass
218def setup_module(module):
219 lsst.utils.tests.init()
222if __name__ == "__main__": 222 ↛ 223line 222 didn't jump to line 223, because the condition on line 222 was never true
223 lsst.utils.tests.init()
224 unittest.main()