lsst.geom g3b44f30a73+6ed7a0bf37
Loading...
Searching...
No Matches
Namespace List
Here is a list of all namespaces with brief descriptions:
[detail level 12345]
 Nconf
 Nlsst
 Ngeom
 N_Angle
 CAngleUnit
 N_Box
 CBox2I
 N_coordinates
 CCoordinateExpr
 CExtent
 CPoint
 N_Interval
 CIntervalI
 N_SpherePoint
 CSpherePoint
 Ndetail
 CPointSpecialized
 CPointSpecialized< double >
 CPointSpecialized< int >
 NpolynomialsLow-level polynomials (including special polynomials) in C++
 Ndetail
 CPackingOrderTraits
 CPackingOrderTraits< PackingOrder::XY >
 CPackingOrderTraits< PackingOrder::YX >
 CBasis1dA basis interface for 1-d series expansions
 CBasis2dA basis interface for 2-d series expansions
 CBinomialMatrixA class that computes binomial coefficients up to a certain power
 CChebyshev1RecurrenceA Recurrence for Chebyshev polynomials of the first kind
 CFunction1dA 1-d function defined by a series expansion and its coefficients
 CFunction2dA 2-d function defined by a series expansion and its coefficients
 CIndex2dA custom tuple that relates the indices of two 1-d functions for x and y to the flattened index for the 2-d function they form
 CPackedBasis2dA Basis2d formed from the product of a Basis1d for each of x and y, truncated at the sum of their orders
 CPackedBasisWorkspace2dA workspace object that can be used to avoid extra memory allocations in repeated calls to PackedBasis2d methods
 CPackedIndexIteratorAn iterator for traversing "packed" triangular 2-d series expansions, in which two 1-d expansions are truncated according to the sum of their orders and all values for one order are stored before any values of the subsequent order
 CPackedIndexRangeA specialized iterator range class for PackedIndexIterator, providing size calculation, comparison, and range-based for support
 CPolynomialRecurrenceA Recurrence for standard polynomials
 CRecurrenceA recurrence relation concept for RecurrenceBasis1d
 CRecurrenceBasis1dA basis for 1-d series expansions defined by a recurrence relation
 CSafeSumA numerically stable summation algorithm for floating-point numbers
 CScaledBasis1dA 1-d basis that transforms all input points before evaluating nested basis
 CScaledBasis2dA 2-d basis that transforms all input points before evaluating nested basis
 CScaling1dA 1-d affine transform that can be used to map one interval to another
 CScaling2dA 2-d separable affine transform that can be used to map one interval to another
 NtestUtils
 Nversion
 CAffineTransformAn affine coordinate transformation consisting of a linear transformation and an offset
 CAngleA class representing an angle
 CAngleUnitA class used to convert scalar POD types such as double to Angle
 CBox2DA floating-point coordinate rectangle geometry
 CBox2IAn integer coordinate rectangle
 CCoordinateBaseA CRTP base class for coordinate objects
 CCoordinateBase< Derived, T, 2 >Specialization of CoordinateBase for 2 dimensions
 CCoordinateBase< Derived, T, 3 >Specialization of CoordinateBase for 3 dimensions
 CCoordinateExprA boolean coordinate
 CExtentA coordinate class intended to represent offsets and dimensions
 CExtent< T, 2 >A coordinate class intended to represent offsets and dimensions (2-d specialization)
 CExtent< T, 3 >A coordinate class intended to represent offsets and dimensions (3-d specialization)
 CExtentBase
 CIntervalDA floating-point coordinate rectangle geometry
 CIntervalIA 1-d integer coordinate range
 CLinearTransformA 2D linear coordinate transformation
 CPointA coordinate class intended to represent absolute positions
 CPoint< T, 2 >A coordinate class intended to represent absolute positions (2-d specialization)
 CPoint< T, 3 >A coordinate class intended to represent absolute positions (3-d specialization)
 CPointBase
 CSingularTransformException
 CSpherePointPoint in an unspecified spherical coordinate system
 NstdSTL namespace
 Chash< lsst::geom::Angle >
 Chash< lsst::geom::AngleUnit >
 Chash< lsst::geom::Box2D >
 Chash< lsst::geom::Box2I >
 Chash< lsst::geom::Extent< T, N > >
 Chash< lsst::geom::IntervalD >
 Chash< lsst::geom::IntervalI >
 Chash< lsst::geom::Point< T, N > >
 Chash< lsst::geom::SpherePoint >