Coverage for python/lsst/daf/butler/core/datasets/type.py: 22%

220 statements  

« prev     ^ index     » next       coverage.py v6.4.2, created at 2022-07-14 22:50 +0000

1# This file is part of daf_butler. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (http://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <http://www.gnu.org/licenses/>. 

21 

22from __future__ import annotations 

23 

24__all__ = ["DatasetType", "SerializedDatasetType"] 

25 

26import re 

27from copy import deepcopy 

28from types import MappingProxyType 

29from typing import TYPE_CHECKING, Any, Callable, Dict, Iterable, List, Mapping, Optional, Tuple, Type, Union 

30 

31from pydantic import BaseModel, StrictBool, StrictStr 

32 

33from ..configSupport import LookupKey 

34from ..dimensions import DimensionGraph, SerializedDimensionGraph 

35from ..json import from_json_pydantic, to_json_pydantic 

36from ..storageClass import StorageClass, StorageClassFactory 

37 

38if TYPE_CHECKING: 38 ↛ 39line 38 didn't jump to line 39, because the condition on line 38 was never true

39 from ...registry import Registry 

40 from ..dimensions import Dimension, DimensionUniverse 

41 

42 

43def _safeMakeMappingProxyType(data: Optional[Mapping]) -> Mapping: 

44 if data is None: 

45 data = {} 

46 return MappingProxyType(data) 

47 

48 

49class SerializedDatasetType(BaseModel): 

50 """Simplified model of a `DatasetType` suitable for serialization.""" 

51 

52 name: StrictStr 

53 storageClass: Optional[StrictStr] = None 

54 dimensions: Optional[SerializedDimensionGraph] = None 

55 parentStorageClass: Optional[StrictStr] = None 

56 isCalibration: StrictBool = False 

57 

58 @classmethod 

59 def direct( 

60 cls, 

61 *, 

62 name: str, 

63 storageClass: Optional[str] = None, 

64 dimensions: Optional[Dict] = None, 

65 parentStorageClass: Optional[str] = None, 

66 isCalibration: bool = False, 

67 ) -> SerializedDatasetType: 

68 """Construct a `SerializedDatasetType` directly without validators. 

69 

70 This differs from PyDantics construct method in that the arguments are 

71 explicitly what the model requires, and it will recurse through 

72 members, constructing them from their corresponding `direct` methods. 

73 

74 This method should only be called when the inputs are trusted. 

75 """ 

76 node = SerializedDatasetType.__new__(cls) 

77 setter = object.__setattr__ 

78 setter(node, "name", name) 

79 setter(node, "storageClass", storageClass) 

80 setter( 

81 node, 

82 "dimensions", 

83 dimensions if dimensions is None else SerializedDimensionGraph.direct(**dimensions), 

84 ) 

85 setter(node, "parentStorageClass", parentStorageClass) 

86 setter(node, "isCalibration", isCalibration) 

87 setter( 

88 node, 

89 "__fields_set__", 

90 {"name", "storageClass", "dimensions", "parentStorageClass", "isCalibration"}, 

91 ) 

92 return node 

93 

94 

95class DatasetType: 

96 r"""A named category of Datasets. 

97 

98 Defines how they are organized, related, and stored. 

99 

100 A concrete, final class whose instances represent `DatasetType`\ s. 

101 `DatasetType` instances may be constructed without a `Registry`, 

102 but they must be registered 

103 via `Registry.registerDatasetType()` before corresponding Datasets 

104 may be added. 

105 `DatasetType` instances are immutable. 

106 

107 Parameters 

108 ---------- 

109 name : `str` 

110 A string name for the Dataset; must correspond to the same 

111 `DatasetType` across all Registries. Names must start with an 

112 upper or lowercase letter, and may contain only letters, numbers, 

113 and underscores. Component dataset types should contain a single 

114 period separating the base dataset type name from the component name 

115 (and may be recursive). 

116 dimensions : `DimensionGraph` or iterable of `Dimension` or `str` 

117 Dimensions used to label and relate instances of this `DatasetType`. 

118 If not a `DimensionGraph`, ``universe`` must be provided as well. 

119 storageClass : `StorageClass` or `str` 

120 Instance of a `StorageClass` or name of `StorageClass` that defines 

121 how this `DatasetType` is persisted. 

122 parentStorageClass : `StorageClass` or `str`, optional 

123 Instance of a `StorageClass` or name of `StorageClass` that defines 

124 how the composite parent is persisted. Must be `None` if this 

125 is not a component. 

126 universe : `DimensionUniverse`, optional 

127 Set of all known dimensions, used to normalize ``dimensions`` if it 

128 is not already a `DimensionGraph`. 

129 isCalibration : `bool`, optional 

130 If `True`, this dataset type may be included in 

131 `~CollectionType.CALIBRATION` collections. 

132 

133 See Also 

134 -------- 

135 :ref:`daf_butler_organizing_datasets` 

136 """ 

137 

138 __slots__ = ( 

139 "_name", 

140 "_dimensions", 

141 "_storageClass", 

142 "_storageClassName", 

143 "_parentStorageClass", 

144 "_parentStorageClassName", 

145 "_isCalibration", 

146 ) 

147 

148 _serializedType = SerializedDatasetType 

149 

150 VALID_NAME_REGEX = re.compile("^[a-zA-Z_][a-zA-Z0-9_]*(\\.[a-zA-Z_][a-zA-Z0-9_]*)*$") 

151 

152 @staticmethod 

153 def nameWithComponent(datasetTypeName: str, componentName: str) -> str: 

154 """Form a valid DatasetTypeName from a parent and component. 

155 

156 No validation is performed. 

157 

158 Parameters 

159 ---------- 

160 datasetTypeName : `str` 

161 Base type name. 

162 componentName : `str` 

163 Name of component. 

164 

165 Returns 

166 ------- 

167 compTypeName : `str` 

168 Name to use for component DatasetType. 

169 """ 

170 return "{}.{}".format(datasetTypeName, componentName) 

171 

172 def __init__( 

173 self, 

174 name: str, 

175 dimensions: Union[DimensionGraph, Iterable[Union[Dimension, str]]], 

176 storageClass: Union[StorageClass, str], 

177 parentStorageClass: Optional[Union[StorageClass, str]] = None, 

178 *, 

179 universe: Optional[DimensionUniverse] = None, 

180 isCalibration: bool = False, 

181 ): 

182 if self.VALID_NAME_REGEX.match(name) is None: 

183 raise ValueError(f"DatasetType name '{name}' is invalid.") 

184 self._name = name 

185 if not isinstance(dimensions, DimensionGraph): 

186 if universe is None: 

187 raise ValueError( 

188 "If dimensions is not a normalized DimensionGraph, a universe must be provided." 

189 ) 

190 dimensions = universe.extract(dimensions) 

191 self._dimensions = dimensions 

192 if name in self._dimensions.universe.getGovernorDimensions().names: 

193 raise ValueError(f"Governor dimension name {name} cannot be used as a dataset type name.") 

194 if not isinstance(storageClass, (StorageClass, str)): 

195 raise ValueError(f"StorageClass argument must be StorageClass or str. Got {storageClass}") 

196 self._storageClass: Optional[StorageClass] 

197 if isinstance(storageClass, StorageClass): 

198 self._storageClass = storageClass 

199 self._storageClassName = storageClass.name 

200 else: 

201 self._storageClass = None 

202 self._storageClassName = storageClass 

203 

204 self._parentStorageClass: Optional[StorageClass] = None 

205 self._parentStorageClassName: Optional[str] = None 

206 if parentStorageClass is not None: 

207 if not isinstance(storageClass, (StorageClass, str)): 

208 raise ValueError( 

209 f"Parent StorageClass argument must be StorageClass or str. Got {parentStorageClass}" 

210 ) 

211 

212 # Only allowed for a component dataset type 

213 _, componentName = self.splitDatasetTypeName(self._name) 

214 if componentName is None: 

215 raise ValueError( 

216 f"Can not specify a parent storage class if this is not a component ({self._name})" 

217 ) 

218 if isinstance(parentStorageClass, StorageClass): 

219 self._parentStorageClass = parentStorageClass 

220 self._parentStorageClassName = parentStorageClass.name 

221 else: 

222 self._parentStorageClassName = parentStorageClass 

223 

224 # Ensure that parent storage class is specified when we have 

225 # a component and is not specified when we don't 

226 _, componentName = self.splitDatasetTypeName(self._name) 

227 if parentStorageClass is None and componentName is not None: 

228 raise ValueError( 

229 f"Component dataset type '{self._name}' constructed without parent storage class" 

230 ) 

231 if parentStorageClass is not None and componentName is None: 

232 raise ValueError(f"Parent storage class specified by {self._name} is not a composite") 

233 self._isCalibration = isCalibration 

234 

235 def __repr__(self) -> str: 

236 extra = "" 

237 if self._parentStorageClassName: 

238 extra = f", parentStorageClass={self._parentStorageClassName}" 

239 if self._isCalibration: 

240 extra += ", isCalibration=True" 

241 return f"DatasetType({self.name!r}, {self.dimensions}, {self._storageClassName}{extra})" 

242 

243 def _equal_ignoring_storage_class(self, other: Any) -> bool: 

244 """Check everything is equal except the storage class. 

245 

246 Parameters 

247 ---------- 

248 other : Any 

249 Object to check against this one. 

250 

251 Returns 

252 ------- 

253 mostly : `bool` 

254 Returns `True` if everything except the storage class is equal. 

255 """ 

256 if not isinstance(other, type(self)): 

257 return False 

258 if self._name != other._name: 

259 return False 

260 if self._dimensions != other._dimensions: 

261 return False 

262 if self._isCalibration != other._isCalibration: 

263 return False 

264 if self._parentStorageClass is not None and other._parentStorageClass is not None: 

265 return self._parentStorageClass == other._parentStorageClass 

266 else: 

267 return self._parentStorageClassName == other._parentStorageClassName 

268 

269 def __eq__(self, other: Any) -> bool: 

270 mostly_equal = self._equal_ignoring_storage_class(other) 

271 if not mostly_equal: 

272 return False 

273 

274 # Be careful not to force a storage class to import the corresponding 

275 # python code. 

276 if self._storageClass is not None and other._storageClass is not None: 

277 if self._storageClass != other._storageClass: 

278 return False 

279 else: 

280 if self._storageClassName != other._storageClassName: 

281 return False 

282 return True 

283 

284 def is_compatible_with(self, other: DatasetType) -> bool: 

285 """Determine if the given `DatasetType` is compatible with this one. 

286 

287 Compatibility requires a matching name and dimensions and a storage 

288 class for this dataset type that can convert the python type associated 

289 with the other storage class to this python type. 

290 

291 Parameters 

292 ---------- 

293 other : `DatasetType` 

294 Dataset type to check. 

295 

296 Returns 

297 ------- 

298 is_compatible : `bool` 

299 Returns `True` if the other dataset type is either the same as this 

300 or the storage class associated with the other can be converted to 

301 this. 

302 """ 

303 mostly_equal = self._equal_ignoring_storage_class(other) 

304 if not mostly_equal: 

305 return False 

306 

307 # If the storage class names match then they are compatible. 

308 if self._storageClassName == other._storageClassName: 

309 return True 

310 

311 # Now required to check the full storage class. 

312 self_sc = self.storageClass 

313 other_sc = other.storageClass 

314 

315 return self_sc.can_convert(other_sc) 

316 

317 def __hash__(self) -> int: 

318 """Hash DatasetType instance. 

319 

320 This only uses StorageClass name which is it consistent with the 

321 implementation of StorageClass hash method. 

322 """ 

323 return hash((self._name, self._dimensions, self._storageClassName, self._parentStorageClassName)) 

324 

325 def __lt__(self, other: Any) -> bool: 

326 """Sort using the dataset type name.""" 

327 if not isinstance(other, type(self)): 

328 return NotImplemented 

329 return self.name < other.name 

330 

331 @property 

332 def name(self) -> str: 

333 """Return a string name for the Dataset. 

334 

335 Must correspond to the same `DatasetType` across all Registries. 

336 """ 

337 return self._name 

338 

339 @property 

340 def dimensions(self) -> DimensionGraph: 

341 r"""Return the `Dimension`\ s fir this dataset type. 

342 

343 The dimensions label and relate instances of this 

344 `DatasetType` (`DimensionGraph`). 

345 """ 

346 return self._dimensions 

347 

348 @property 

349 def storageClass(self) -> StorageClass: 

350 """Return `StorageClass` instance associated with this dataset type. 

351 

352 The `StorageClass` defines how this `DatasetType` 

353 is persisted. Note that if DatasetType was constructed with a name 

354 of a StorageClass then Butler has to be initialized before using 

355 this property. 

356 """ 

357 if self._storageClass is None: 

358 self._storageClass = StorageClassFactory().getStorageClass(self._storageClassName) 

359 return self._storageClass 

360 

361 @property 

362 def storageClass_name(self) -> str: 

363 """Return the storage class name. 

364 

365 This will never force the storage class to be imported. 

366 """ 

367 return self._storageClassName 

368 

369 @property 

370 def parentStorageClass(self) -> Optional[StorageClass]: 

371 """Return the storage class of the composite containing this component. 

372 

373 Note that if DatasetType was constructed with a name of a 

374 StorageClass then Butler has to be initialized before using this 

375 property. Can be `None` if this is not a component of a composite. 

376 Must be defined if this is a component. 

377 """ 

378 if self._parentStorageClass is None and self._parentStorageClassName is None: 

379 return None 

380 if self._parentStorageClass is None and self._parentStorageClassName is not None: 

381 self._parentStorageClass = StorageClassFactory().getStorageClass(self._parentStorageClassName) 

382 return self._parentStorageClass 

383 

384 def isCalibration(self) -> bool: 

385 """Return if datasets of this type can be in calibration collections. 

386 

387 Returns 

388 ------- 

389 flag : `bool` 

390 `True` if datasets of this type may be included in calibration 

391 collections. 

392 """ 

393 return self._isCalibration 

394 

395 @staticmethod 

396 def splitDatasetTypeName(datasetTypeName: str) -> Tuple[str, Optional[str]]: 

397 """Return the root name and the component from a composite name. 

398 

399 Parameters 

400 ---------- 

401 datasetTypeName : `str` 

402 The name of the dataset type, can include a component using 

403 a "."-separator. 

404 

405 Returns 

406 ------- 

407 rootName : `str` 

408 Root name without any components. 

409 componentName : `str` 

410 The component if it has been specified, else `None`. 

411 

412 Notes 

413 ----- 

414 If the dataset type name is ``a.b.c`` this method will return a 

415 root name of ``a`` and a component name of ``b.c``. 

416 """ 

417 comp = None 

418 root = datasetTypeName 

419 if "." in root: 

420 # If there is doubt, the component is after the first "." 

421 root, comp = root.split(".", maxsplit=1) 

422 return root, comp 

423 

424 def nameAndComponent(self) -> Tuple[str, Optional[str]]: 

425 """Return the root name of this dataset type and any component. 

426 

427 Returns 

428 ------- 

429 rootName : `str` 

430 Root name for this `DatasetType` without any components. 

431 componentName : `str` 

432 The component if it has been specified, else `None`. 

433 """ 

434 return self.splitDatasetTypeName(self.name) 

435 

436 def component(self) -> Optional[str]: 

437 """Return the component name (if defined). 

438 

439 Returns 

440 ------- 

441 comp : `str` 

442 Name of component part of DatasetType name. `None` if this 

443 `DatasetType` is not associated with a component. 

444 """ 

445 _, comp = self.nameAndComponent() 

446 return comp 

447 

448 def componentTypeName(self, component: str) -> str: 

449 """Derive a component dataset type from a composite. 

450 

451 Parameters 

452 ---------- 

453 component : `str` 

454 Name of component 

455 

456 Returns 

457 ------- 

458 derived : `str` 

459 Compound name of this `DatasetType` and the component. 

460 

461 Raises 

462 ------ 

463 KeyError 

464 Requested component is not supported by this `DatasetType`. 

465 """ 

466 if component in self.storageClass.allComponents(): 

467 return self.nameWithComponent(self.name, component) 

468 raise KeyError(f"Requested component ({component}) not understood by this DatasetType ({self})") 

469 

470 def makeCompositeDatasetType(self) -> DatasetType: 

471 """Return a composite dataset type from the component. 

472 

473 Returns 

474 ------- 

475 composite : `DatasetType` 

476 The composite dataset type. 

477 

478 Raises 

479 ------ 

480 RuntimeError 

481 Raised if this dataset type is not a component dataset type. 

482 """ 

483 if not self.isComponent(): 

484 raise RuntimeError(f"DatasetType {self.name} must be a component to form the composite") 

485 composite_name, _ = self.nameAndComponent() 

486 if self.parentStorageClass is None: 

487 raise ValueError( 

488 f"Parent storage class is not set. Unable to create composite type from {self.name}" 

489 ) 

490 return DatasetType( 

491 composite_name, 

492 dimensions=self.dimensions, 

493 storageClass=self.parentStorageClass, 

494 isCalibration=self.isCalibration(), 

495 ) 

496 

497 def makeComponentDatasetType(self, component: str) -> DatasetType: 

498 """Return a component dataset type from a composite. 

499 

500 Assumes the same dimensions as the parent. 

501 

502 Parameters 

503 ---------- 

504 component : `str` 

505 Name of component 

506 

507 Returns 

508 ------- 

509 datasetType : `DatasetType` 

510 A new DatasetType instance. 

511 """ 

512 # The component could be a read/write or read component 

513 return DatasetType( 

514 self.componentTypeName(component), 

515 dimensions=self.dimensions, 

516 storageClass=self.storageClass.allComponents()[component], 

517 parentStorageClass=self.storageClass, 

518 isCalibration=self.isCalibration(), 

519 ) 

520 

521 def makeAllComponentDatasetTypes(self) -> List[DatasetType]: 

522 """Return all component dataset types for this composite. 

523 

524 Returns 

525 ------- 

526 all : `list` of `DatasetType` 

527 All the component dataset types. If this is not a composite 

528 then returns an empty list. 

529 """ 

530 return [ 

531 self.makeComponentDatasetType(componentName) 

532 for componentName in self.storageClass.allComponents() 

533 ] 

534 

535 def isComponent(self) -> bool: 

536 """Return whether this `DatasetType` refers to a component. 

537 

538 Returns 

539 ------- 

540 isComponent : `bool` 

541 `True` if this `DatasetType` is a component, `False` otherwise. 

542 """ 

543 if self.component(): 

544 return True 

545 return False 

546 

547 def isComposite(self) -> bool: 

548 """Return whether this `DatasetType` is a composite. 

549 

550 Returns 

551 ------- 

552 isComposite : `bool` 

553 `True` if this `DatasetType` is a composite type, `False` 

554 otherwise. 

555 """ 

556 return self.storageClass.isComposite() 

557 

558 def _lookupNames(self) -> Tuple[LookupKey, ...]: 

559 """Return name keys to use for lookups in configurations. 

560 

561 The names are returned in order of priority. 

562 

563 Returns 

564 ------- 

565 names : `tuple` of `LookupKey` 

566 Tuple of the `DatasetType` name and the `StorageClass` name. 

567 If the name includes a component the name with the component 

568 is first, then the name without the component and finally 

569 the storage class name and the storage class name of the 

570 composite. 

571 """ 

572 rootName, componentName = self.nameAndComponent() 

573 lookups: Tuple[LookupKey, ...] = (LookupKey(name=self.name),) 

574 if componentName is not None: 

575 lookups = lookups + (LookupKey(name=rootName),) 

576 

577 if self.dimensions: 

578 # Dimensions are a lower priority than dataset type name 

579 lookups = lookups + (LookupKey(dimensions=self.dimensions),) 

580 

581 storageClasses = self.storageClass._lookupNames() 

582 if componentName is not None and self.parentStorageClass is not None: 

583 storageClasses += self.parentStorageClass._lookupNames() 

584 

585 return lookups + storageClasses 

586 

587 def to_simple(self, minimal: bool = False) -> SerializedDatasetType: 

588 """Convert this class to a simple python type. 

589 

590 This makes it suitable for serialization. 

591 

592 Parameters 

593 ---------- 

594 minimal : `bool`, optional 

595 Use minimal serialization. Requires Registry to convert 

596 back to a full type. 

597 

598 Returns 

599 ------- 

600 simple : `SerializedDatasetType` 

601 The object converted to a class suitable for serialization. 

602 """ 

603 as_dict: Dict[str, Any] 

604 if minimal: 

605 # Only needs the name. 

606 as_dict = {"name": self.name} 

607 else: 

608 # Convert to a dict form 

609 as_dict = { 

610 "name": self.name, 

611 "storageClass": self._storageClassName, 

612 "isCalibration": self._isCalibration, 

613 "dimensions": self.dimensions.to_simple(), 

614 } 

615 

616 if self._parentStorageClassName is not None: 

617 as_dict["parentStorageClass"] = self._parentStorageClassName 

618 return SerializedDatasetType(**as_dict) 

619 

620 @classmethod 

621 def from_simple( 

622 cls, 

623 simple: SerializedDatasetType, 

624 universe: Optional[DimensionUniverse] = None, 

625 registry: Optional[Registry] = None, 

626 ) -> DatasetType: 

627 """Construct a new object from the simplified form. 

628 

629 This is usually data returned from the `to_simple` method. 

630 

631 Parameters 

632 ---------- 

633 simple : `SerializedDatasetType` 

634 The value returned by `to_simple()`. 

635 universe : `DimensionUniverse` 

636 The special graph of all known dimensions of which this graph will 

637 be a subset. Can be `None` if a registry is provided. 

638 registry : `lsst.daf.butler.Registry`, optional 

639 Registry to use to convert simple name of a DatasetType to 

640 a full `DatasetType`. Can be `None` if a full description of 

641 the type is provided along with a universe. 

642 

643 Returns 

644 ------- 

645 datasetType : `DatasetType` 

646 Newly-constructed object. 

647 """ 

648 if simple.storageClass is None: 

649 # Treat this as minimalist representation 

650 if registry is None: 

651 raise ValueError( 

652 f"Unable to convert a DatasetType name '{simple}' to DatasetType without a Registry" 

653 ) 

654 return registry.getDatasetType(simple.name) 

655 

656 if universe is None and registry is None: 

657 raise ValueError("One of universe or registry must be provided.") 

658 

659 if universe is None and registry is not None: 

660 # registry should not be none by now but test helps mypy 

661 universe = registry.dimensions 

662 

663 if universe is None: 

664 # this is for mypy 

665 raise ValueError("Unable to determine a usable universe") 

666 

667 if simple.dimensions is None: 

668 # mypy hint 

669 raise ValueError(f"Dimensions must be specified in {simple}") 

670 

671 return cls( 

672 name=simple.name, 

673 dimensions=DimensionGraph.from_simple(simple.dimensions, universe=universe), 

674 storageClass=simple.storageClass, 

675 isCalibration=simple.isCalibration, 

676 parentStorageClass=simple.parentStorageClass, 

677 universe=universe, 

678 ) 

679 

680 to_json = to_json_pydantic 

681 from_json = classmethod(from_json_pydantic) 

682 

683 def __reduce__( 

684 self, 

685 ) -> Tuple[ 

686 Callable, Tuple[Type[DatasetType], Tuple[str, DimensionGraph, str, Optional[str]], Dict[str, bool]] 

687 ]: 

688 """Support pickling. 

689 

690 StorageClass instances can not normally be pickled, so we pickle 

691 StorageClass name instead of instance. 

692 """ 

693 return _unpickle_via_factory, ( 

694 self.__class__, 

695 (self.name, self.dimensions, self._storageClassName, self._parentStorageClassName), 

696 {"isCalibration": self._isCalibration}, 

697 ) 

698 

699 def __deepcopy__(self, memo: Any) -> DatasetType: 

700 """Support for deep copy method. 

701 

702 Normally ``deepcopy`` will use pickle mechanism to make copies. 

703 We want to avoid that to support (possibly degenerate) use case when 

704 DatasetType is constructed with StorageClass instance which is not 

705 registered with StorageClassFactory (this happens in unit tests). 

706 Instead we re-implement ``__deepcopy__`` method. 

707 """ 

708 return DatasetType( 

709 name=deepcopy(self.name, memo), 

710 dimensions=deepcopy(self.dimensions, memo), 

711 storageClass=deepcopy(self._storageClass or self._storageClassName, memo), 

712 parentStorageClass=deepcopy(self._parentStorageClass or self._parentStorageClassName, memo), 

713 isCalibration=deepcopy(self._isCalibration, memo), 

714 ) 

715 

716 

717def _unpickle_via_factory(factory: Callable, args: Any, kwargs: Any) -> DatasetType: 

718 """Unpickle something by calling a factory. 

719 

720 Allows subclasses to unpickle using `__reduce__` with keyword 

721 arguments as well as positional arguments. 

722 """ 

723 return factory(*args, **kwargs)