lsst.fgcmcal g9c3108eb99+601a40e866
utilities.py
Go to the documentation of this file.
1# This file is part of fgcmcal.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
21"""Utility functions for fgcmcal.
22
23This file contains utility functions that are used by more than one task,
24and do not need to be part of a task.
25"""
26
27import numpy as np
28import os
29import re
30
31from lsst.daf.base import PropertyList
32import lsst.daf.persistence as dafPersist
33import lsst.afw.cameraGeom as afwCameraGeom
34import lsst.afw.table as afwTable
35import lsst.afw.image as afwImage
36import lsst.afw.math as afwMath
37import lsst.geom as geom
38from lsst.obs.base import createInitialSkyWcs
39from lsst.obs.base import Instrument
40
41import fgcm
42
43
44FGCM_EXP_FIELD = 'VISIT'
45FGCM_CCD_FIELD = 'DETECTOR'
46FGCM_ILLEGAL_VALUE = -9999.0
47
48
49def makeConfigDict(config, log, camera, maxIter,
50 resetFitParameters, outputZeropoints,
51 lutFilterNames, tract=None):
52 """
53 Make the FGCM fit cycle configuration dict
54
55 Parameters
56 ----------
57 config: `lsst.fgcmcal.FgcmFitCycleConfig`
58 Configuration object
59 log: `lsst.log.Log`
60 LSST log object
61 camera: `lsst.afw.cameraGeom.Camera`
62 Camera from the butler
63 maxIter: `int`
64 Maximum number of iterations
65 resetFitParameters: `bool`
66 Reset fit parameters before fitting?
67 outputZeropoints: `bool`
68 Compute zeropoints for output?
69 lutFilterNames : array-like, `str`
70 Array of physical filter names in the LUT.
71 tract: `int`, optional
72 Tract number for extending the output file name for debugging.
73 Default is None.
74
75 Returns
76 -------
77 configDict: `dict`
78 Configuration dictionary for fgcm
79 """
80 # Extract the bands that are _not_ being fit for fgcm configuration
81 notFitBands = [b for b in config.bands if b not in config.fitBands]
82
83 # process the starColorCuts
84 starColorCutList = []
85 for ccut in config.starColorCuts:
86 parts = ccut.split(',')
87 starColorCutList.append([parts[0], parts[1], float(parts[2]), float(parts[3])])
88
89 # TODO: Having direct access to the mirror area from the camera would be
90 # useful. See DM-16489.
91 # Mirror area in cm**2
92 mirrorArea = np.pi*(camera.telescopeDiameter*100./2.)**2.
93
94 # Get approximate average camera gain:
95 gains = [amp.getGain() for detector in camera for amp in detector.getAmplifiers()]
96 cameraGain = float(np.median(gains))
97
98 # Cut down the filter map to those that are in the LUT
99 filterToBand = {filterName: config.physicalFilterMap[filterName] for
100 filterName in lutFilterNames}
101
102 if tract is None:
103 outfileBase = config.outfileBase
104 else:
105 outfileBase = '%s-%06d' % (config.outfileBase, tract)
106
107 # create a configuration dictionary for fgcmFitCycle
108 configDict = {'outfileBase': outfileBase,
109 'logger': log,
110 'exposureFile': None,
111 'obsFile': None,
112 'indexFile': None,
113 'lutFile': None,
114 'mirrorArea': mirrorArea,
115 'cameraGain': cameraGain,
116 'ccdStartIndex': camera[0].getId(),
117 'expField': FGCM_EXP_FIELD,
118 'ccdField': FGCM_CCD_FIELD,
119 'seeingField': 'DELTA_APER',
120 'fwhmField': 'PSFSIGMA',
121 'skyBrightnessField': 'SKYBACKGROUND',
122 'deepFlag': 'DEEPFLAG', # unused
123 'bands': list(config.bands),
124 'fitBands': list(config.fitBands),
125 'notFitBands': notFitBands,
126 'requiredBands': list(config.requiredBands),
127 'filterToBand': filterToBand,
128 'logLevel': 'INFO',
129 'nCore': config.nCore,
130 'nStarPerRun': config.nStarPerRun,
131 'nExpPerRun': config.nExpPerRun,
132 'reserveFraction': config.reserveFraction,
133 'freezeStdAtmosphere': config.freezeStdAtmosphere,
134 'precomputeSuperStarInitialCycle': config.precomputeSuperStarInitialCycle,
135 'superStarSubCCDDict': dict(config.superStarSubCcdDict),
136 'superStarSubCCDChebyshevOrder': config.superStarSubCcdChebyshevOrder,
137 'superStarSubCCDTriangular': config.superStarSubCcdTriangular,
138 'superStarSigmaClip': config.superStarSigmaClip,
139 'focalPlaneSigmaClip': config.focalPlaneSigmaClip,
140 'ccdGraySubCCDDict': dict(config.ccdGraySubCcdDict),
141 'ccdGraySubCCDChebyshevOrder': config.ccdGraySubCcdChebyshevOrder,
142 'ccdGraySubCCDTriangular': config.ccdGraySubCcdTriangular,
143 'ccdGrayFocalPlaneDict': dict(config.ccdGrayFocalPlaneDict),
144 'ccdGrayFocalPlaneChebyshevOrder': config.ccdGrayFocalPlaneChebyshevOrder,
145 'ccdGrayFocalPlaneFitMinCcd': config.ccdGrayFocalPlaneFitMinCcd,
146 'cycleNumber': config.cycleNumber,
147 'maxIter': maxIter,
148 'deltaMagBkgOffsetPercentile': config.deltaMagBkgOffsetPercentile,
149 'deltaMagBkgPerCcd': config.deltaMagBkgPerCcd,
150 'UTBoundary': config.utBoundary,
151 'washMJDs': config.washMjds,
152 'epochMJDs': config.epochMjds,
153 'coatingMJDs': config.coatingMjds,
154 'minObsPerBand': config.minObsPerBand,
155 'latitude': config.latitude,
156 'brightObsGrayMax': config.brightObsGrayMax,
157 'minStarPerCCD': config.minStarPerCcd,
158 'minCCDPerExp': config.minCcdPerExp,
159 'maxCCDGrayErr': config.maxCcdGrayErr,
160 'minStarPerExp': config.minStarPerExp,
161 'minExpPerNight': config.minExpPerNight,
162 'expGrayInitialCut': config.expGrayInitialCut,
163 'expGrayPhotometricCutDict': dict(config.expGrayPhotometricCutDict),
164 'expGrayHighCutDict': dict(config.expGrayHighCutDict),
165 'expGrayRecoverCut': config.expGrayRecoverCut,
166 'expVarGrayPhotometricCutDict': dict(config.expVarGrayPhotometricCutDict),
167 'expGrayErrRecoverCut': config.expGrayErrRecoverCut,
168 'refStarSnMin': config.refStarSnMin,
169 'refStarOutlierNSig': config.refStarOutlierNSig,
170 'applyRefStarColorCuts': config.applyRefStarColorCuts,
171 'illegalValue': FGCM_ILLEGAL_VALUE, # internally used by fgcm.
172 'starColorCuts': starColorCutList,
173 'aperCorrFitNBins': config.aperCorrFitNBins,
174 'aperCorrInputSlopeDict': dict(config.aperCorrInputSlopeDict),
175 'sedBoundaryTermDict': config.sedboundaryterms.toDict()['data'],
176 'sedTermDict': config.sedterms.toDict()['data'],
177 'colorSplitBands': list(config.colorSplitBands),
178 'sigFgcmMaxErr': config.sigFgcmMaxErr,
179 'sigFgcmMaxEGrayDict': dict(config.sigFgcmMaxEGrayDict),
180 'ccdGrayMaxStarErr': config.ccdGrayMaxStarErr,
181 'approxThroughputDict': dict(config.approxThroughputDict),
182 'sigmaCalRange': list(config.sigmaCalRange),
183 'sigmaCalFitPercentile': list(config.sigmaCalFitPercentile),
184 'sigmaCalPlotPercentile': list(config.sigmaCalPlotPercentile),
185 'sigma0Phot': config.sigma0Phot,
186 'mapLongitudeRef': config.mapLongitudeRef,
187 'mapNSide': config.mapNSide,
188 'varNSig': 100.0, # Turn off 'variable star selection' which doesn't work yet
189 'varMinBand': 2,
190 'useRetrievedPwv': False,
191 'useNightlyRetrievedPwv': False,
192 'pwvRetrievalSmoothBlock': 25,
193 'useQuadraticPwv': config.useQuadraticPwv,
194 'useRetrievedTauInit': False,
195 'tauRetrievalMinCCDPerNight': 500,
196 'modelMagErrors': config.modelMagErrors,
197 'instrumentParsPerBand': config.instrumentParsPerBand,
198 'instrumentSlopeMinDeltaT': config.instrumentSlopeMinDeltaT,
199 'fitMirrorChromaticity': config.fitMirrorChromaticity,
200 'useRepeatabilityForExpGrayCutsDict': dict(config.useRepeatabilityForExpGrayCutsDict),
201 'autoPhotometricCutNSig': config.autoPhotometricCutNSig,
202 'autoHighCutNSig': config.autoHighCutNSig,
203 'printOnly': False,
204 'quietMode': config.quietMode,
205 'randomSeed': config.randomSeed,
206 'outputStars': False,
207 'outputPath': os.path.abspath('.'),
208 'clobber': True,
209 'useSedLUT': False,
210 'resetParameters': resetFitParameters,
211 'doPlots': config.doPlots,
212 'outputFgcmcalZpts': True, # when outputting zpts, use fgcmcal format
213 'outputZeropoints': outputZeropoints}
214
215 return configDict
216
217
218def translateFgcmLut(lutCat, physicalFilterMap):
219 """
220 Translate the FGCM look-up-table into an fgcm-compatible object
221
222 Parameters
223 ----------
224 lutCat: `lsst.afw.table.BaseCatalog`
225 Catalog describing the FGCM look-up table
226 physicalFilterMap: `dict`
227 Physical filter to band mapping
228
229 Returns
230 -------
231 fgcmLut: `lsst.fgcm.FgcmLut`
232 Lookup table for FGCM
233 lutIndexVals: `numpy.ndarray`
234 Numpy array with LUT index information for FGCM
235 lutStd: `numpy.ndarray`
236 Numpy array with LUT standard throughput values for FGCM
237
238 Notes
239 -----
240 After running this code, it is wise to `del lutCat` to clear the memory.
241 """
242
243 # first we need the lutIndexVals
244 lutFilterNames = np.array(lutCat[0]['physicalFilters'].split(','), dtype='U')
245 lutStdFilterNames = np.array(lutCat[0]['stdPhysicalFilters'].split(','), dtype='U')
246
247 # Note that any discrepancies between config values will raise relevant
248 # exceptions in the FGCM code.
249
250 lutIndexVals = np.zeros(1, dtype=[('FILTERNAMES', lutFilterNames.dtype.str,
251 lutFilterNames.size),
252 ('STDFILTERNAMES', lutStdFilterNames.dtype.str,
253 lutStdFilterNames.size),
254 ('PMB', 'f8', lutCat[0]['pmb'].size),
255 ('PMBFACTOR', 'f8', lutCat[0]['pmbFactor'].size),
256 ('PMBELEVATION', 'f8'),
257 ('LAMBDANORM', 'f8'),
258 ('PWV', 'f8', lutCat[0]['pwv'].size),
259 ('O3', 'f8', lutCat[0]['o3'].size),
260 ('TAU', 'f8', lutCat[0]['tau'].size),
261 ('ALPHA', 'f8', lutCat[0]['alpha'].size),
262 ('ZENITH', 'f8', lutCat[0]['zenith'].size),
263 ('NCCD', 'i4')])
264
265 lutIndexVals['FILTERNAMES'][:] = lutFilterNames
266 lutIndexVals['STDFILTERNAMES'][:] = lutStdFilterNames
267 lutIndexVals['PMB'][:] = lutCat[0]['pmb']
268 lutIndexVals['PMBFACTOR'][:] = lutCat[0]['pmbFactor']
269 lutIndexVals['PMBELEVATION'] = lutCat[0]['pmbElevation']
270 lutIndexVals['LAMBDANORM'] = lutCat[0]['lambdaNorm']
271 lutIndexVals['PWV'][:] = lutCat[0]['pwv']
272 lutIndexVals['O3'][:] = lutCat[0]['o3']
273 lutIndexVals['TAU'][:] = lutCat[0]['tau']
274 lutIndexVals['ALPHA'][:] = lutCat[0]['alpha']
275 lutIndexVals['ZENITH'][:] = lutCat[0]['zenith']
276 lutIndexVals['NCCD'] = lutCat[0]['nCcd']
277
278 # now we need the Standard Values
279 lutStd = np.zeros(1, dtype=[('PMBSTD', 'f8'),
280 ('PWVSTD', 'f8'),
281 ('O3STD', 'f8'),
282 ('TAUSTD', 'f8'),
283 ('ALPHASTD', 'f8'),
284 ('ZENITHSTD', 'f8'),
285 ('LAMBDARANGE', 'f8', 2),
286 ('LAMBDASTEP', 'f8'),
287 ('LAMBDASTD', 'f8', lutFilterNames.size),
288 ('LAMBDASTDFILTER', 'f8', lutStdFilterNames.size),
289 ('I0STD', 'f8', lutFilterNames.size),
290 ('I1STD', 'f8', lutFilterNames.size),
291 ('I10STD', 'f8', lutFilterNames.size),
292 ('I2STD', 'f8', lutFilterNames.size),
293 ('LAMBDAB', 'f8', lutFilterNames.size),
294 ('ATMLAMBDA', 'f8', lutCat[0]['atmLambda'].size),
295 ('ATMSTDTRANS', 'f8', lutCat[0]['atmStdTrans'].size)])
296 lutStd['PMBSTD'] = lutCat[0]['pmbStd']
297 lutStd['PWVSTD'] = lutCat[0]['pwvStd']
298 lutStd['O3STD'] = lutCat[0]['o3Std']
299 lutStd['TAUSTD'] = lutCat[0]['tauStd']
300 lutStd['ALPHASTD'] = lutCat[0]['alphaStd']
301 lutStd['ZENITHSTD'] = lutCat[0]['zenithStd']
302 lutStd['LAMBDARANGE'][:] = lutCat[0]['lambdaRange'][:]
303 lutStd['LAMBDASTEP'] = lutCat[0]['lambdaStep']
304 lutStd['LAMBDASTD'][:] = lutCat[0]['lambdaStd']
305 lutStd['LAMBDASTDFILTER'][:] = lutCat[0]['lambdaStdFilter']
306 lutStd['I0STD'][:] = lutCat[0]['i0Std']
307 lutStd['I1STD'][:] = lutCat[0]['i1Std']
308 lutStd['I10STD'][:] = lutCat[0]['i10Std']
309 lutStd['I2STD'][:] = lutCat[0]['i2Std']
310 lutStd['LAMBDAB'][:] = lutCat[0]['lambdaB']
311 lutStd['ATMLAMBDA'][:] = lutCat[0]['atmLambda'][:]
312 lutStd['ATMSTDTRANS'][:] = lutCat[0]['atmStdTrans'][:]
313
314 lutTypes = [row['luttype'] for row in lutCat]
315
316 # And the flattened look-up-table
317 lutFlat = np.zeros(lutCat[0]['lut'].size, dtype=[('I0', 'f4'),
318 ('I1', 'f4')])
319
320 lutFlat['I0'][:] = lutCat[lutTypes.index('I0')]['lut'][:]
321 lutFlat['I1'][:] = lutCat[lutTypes.index('I1')]['lut'][:]
322
323 lutDerivFlat = np.zeros(lutCat[0]['lut'].size, dtype=[('D_LNPWV', 'f4'),
324 ('D_O3', 'f4'),
325 ('D_LNTAU', 'f4'),
326 ('D_ALPHA', 'f4'),
327 ('D_SECZENITH', 'f4'),
328 ('D_LNPWV_I1', 'f4'),
329 ('D_O3_I1', 'f4'),
330 ('D_LNTAU_I1', 'f4'),
331 ('D_ALPHA_I1', 'f4'),
332 ('D_SECZENITH_I1', 'f4')])
333
334 for name in lutDerivFlat.dtype.names:
335 lutDerivFlat[name][:] = lutCat[lutTypes.index(name)]['lut'][:]
336
337 # The fgcm.FgcmLUT() class copies all the LUT information into special
338 # shared memory objects that will not blow up the memory usage when used
339 # with python multiprocessing. Once all the numbers are copied, the
340 # references to the temporary objects (lutCat, lutFlat, lutDerivFlat)
341 # will fall out of scope and can be cleaned up by the garbage collector.
342 fgcmLut = fgcm.FgcmLUT(lutIndexVals, lutFlat, lutDerivFlat, lutStd,
343 filterToBand=physicalFilterMap)
344
345 return fgcmLut, lutIndexVals, lutStd
346
347
349 """
350 Translate the FGCM visit catalog to an fgcm-compatible object
351
352 Parameters
353 ----------
354 visitCat: `lsst.afw.table.BaseCatalog`
355 FGCM visitCat from `lsst.fgcmcal.FgcmBuildStarsTask`
356
357 Returns
358 -------
359 fgcmExpInfo: `numpy.ndarray`
360 Numpy array for visit information for FGCM
361
362 Notes
363 -----
364 After running this code, it is wise to `del visitCat` to clear the memory.
365 """
366
367 fgcmExpInfo = np.zeros(len(visitCat), dtype=[('VISIT', 'i8'),
368 ('MJD', 'f8'),
369 ('EXPTIME', 'f8'),
370 ('PSFSIGMA', 'f8'),
371 ('DELTA_APER', 'f8'),
372 ('SKYBACKGROUND', 'f8'),
373 ('DEEPFLAG', 'i2'),
374 ('TELHA', 'f8'),
375 ('TELRA', 'f8'),
376 ('TELDEC', 'f8'),
377 ('TELROT', 'f8'),
378 ('PMB', 'f8'),
379 ('FILTERNAME', 'a50')])
380 fgcmExpInfo['VISIT'][:] = visitCat['visit']
381 fgcmExpInfo['MJD'][:] = visitCat['mjd']
382 fgcmExpInfo['EXPTIME'][:] = visitCat['exptime']
383 fgcmExpInfo['DEEPFLAG'][:] = visitCat['deepFlag']
384 fgcmExpInfo['TELHA'][:] = visitCat['telha']
385 fgcmExpInfo['TELRA'][:] = visitCat['telra']
386 fgcmExpInfo['TELDEC'][:] = visitCat['teldec']
387 fgcmExpInfo['TELROT'][:] = visitCat['telrot']
388 fgcmExpInfo['PMB'][:] = visitCat['pmb']
389 fgcmExpInfo['PSFSIGMA'][:] = visitCat['psfSigma']
390 fgcmExpInfo['DELTA_APER'][:] = visitCat['deltaAper']
391 fgcmExpInfo['SKYBACKGROUND'][:] = visitCat['skyBackground']
392 # Note that we have to go through asAstropy() to get a string
393 # array out of an afwTable. This is faster than a row-by-row loop.
394 fgcmExpInfo['FILTERNAME'][:] = visitCat.asAstropy()['physicalFilter']
395
396 return fgcmExpInfo
397
398
399def computeCcdOffsets(camera, defaultOrientation):
400 """
401 Compute the CCD offsets in ra/dec and x/y space
402
403 Parameters
404 ----------
405 camera: `lsst.afw.cameraGeom.Camera`
406 defaultOrientation: `float`
407 Default camera orientation (degrees)
408
409 Returns
410 -------
411 ccdOffsets: `numpy.ndarray`
412 Numpy array with ccd offset information for input to FGCM.
413 Angular units are degrees, and x/y units are pixels.
414 """
415 # TODO: DM-21215 will fully generalize to arbitrary camera orientations
416
417 # and we need to know the ccd offsets from the camera geometry
418 ccdOffsets = np.zeros(len(camera), dtype=[('CCDNUM', 'i4'),
419 ('DELTA_RA', 'f8'),
420 ('DELTA_DEC', 'f8'),
421 ('RA_SIZE', 'f8'),
422 ('DEC_SIZE', 'f8'),
423 ('X_SIZE', 'i4'),
424 ('Y_SIZE', 'i4')])
425
426 # Generate fake WCSs centered at 180/0 to avoid the RA=0/360 problem,
427 # since we are looking for relative positions
428 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
429
430 # TODO: DM-17597 will update testdata_jointcal so that the test data
431 # does not have nan as the boresight angle for HSC data. For the
432 # time being, there is this ungainly hack.
433 if camera.getName() == 'HSC' and np.isnan(defaultOrientation):
434 orientation = 270*geom.degrees
435 else:
436 orientation = defaultOrientation*geom.degrees
437 flipX = False
438
439 # Create a temporary visitInfo for input to createInitialSkyWcs
440 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
441 boresightRotAngle=orientation,
442 rotType=afwImage.RotType.SKY)
443
444 for i, detector in enumerate(camera):
445 ccdOffsets['CCDNUM'][i] = detector.getId()
446
447 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
448
449 detCenter = wcs.pixelToSky(detector.getCenter(afwCameraGeom.PIXELS))
450 ccdOffsets['DELTA_RA'][i] = (detCenter.getRa() - boresight.getRa()).asDegrees()
451 ccdOffsets['DELTA_DEC'][i] = (detCenter.getDec() - boresight.getDec()).asDegrees()
452
453 bbox = detector.getBBox()
454
455 detCorner1 = wcs.pixelToSky(geom.Point2D(bbox.getMin()))
456 detCorner2 = wcs.pixelToSky(geom.Point2D(bbox.getMax()))
457
458 ccdOffsets['RA_SIZE'][i] = np.abs((detCorner2.getRa() - detCorner1.getRa()).asDegrees())
459 ccdOffsets['DEC_SIZE'][i] = np.abs((detCorner2.getDec() - detCorner1.getDec()).asDegrees())
460
461 ccdOffsets['X_SIZE'][i] = bbox.getMaxX()
462 ccdOffsets['Y_SIZE'][i] = bbox.getMaxY()
463
464 return ccdOffsets
465
466
468 """
469 Compute the median pixel scale in the camera
470
471 Returns
472 -------
473 pixelScale: `float`
474 Average pixel scale (arcsecond) over the camera
475 """
476
477 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
478 orientation = 0.0*geom.degrees
479 flipX = False
480
481 # Create a temporary visitInfo for input to createInitialSkyWcs
482 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
483 boresightRotAngle=orientation,
484 rotType=afwImage.RotType.SKY)
485
486 pixelScales = np.zeros(len(camera))
487 for i, detector in enumerate(camera):
488 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
489 pixelScales[i] = wcs.getPixelScale().asArcseconds()
490
491 ok, = np.where(pixelScales > 0.0)
492 return np.median(pixelScales[ok])
493
494
496 """
497 Compute the approximate pixel area bounded fields from the camera
498 geometry.
499
500 Parameters
501 ----------
502 camera: `lsst.afw.cameraGeom.Camera`
503
504 Returns
505 -------
506 approxPixelAreaFields: `dict`
507 Dictionary of approximate area fields, keyed with detector ID
508 """
509
510 areaScaling = 1. / computeReferencePixelScale(camera)**2.
511
512 # Generate fake WCSs centered at 180/0 to avoid the RA=0/360 problem,
513 # since we are looking for relative scales
514 boresight = geom.SpherePoint(180.0*geom.degrees, 0.0*geom.degrees)
515
516 flipX = False
517 # Create a temporary visitInfo for input to createInitialSkyWcs
518 # The orientation does not matter for the area computation
519 visitInfo = afwImage.VisitInfo(boresightRaDec=boresight,
520 boresightRotAngle=0.0*geom.degrees,
521 rotType=afwImage.RotType.SKY)
522
523 approxPixelAreaFields = {}
524
525 for i, detector in enumerate(camera):
526 key = detector.getId()
527
528 wcs = createInitialSkyWcs(visitInfo, detector, flipX)
529 bbox = detector.getBBox()
530
531 areaField = afwMath.PixelAreaBoundedField(bbox, wcs,
532 unit=geom.arcseconds, scaling=areaScaling)
533 approxAreaField = afwMath.ChebyshevBoundedField.approximate(areaField)
534
535 approxPixelAreaFields[key] = approxAreaField
536
537 return approxPixelAreaFields
538
539
540def makeZptSchema(superStarChebyshevSize, zptChebyshevSize):
541 """
542 Make the zeropoint schema
543
544 Parameters
545 ----------
546 superStarChebyshevSize: `int`
547 Length of the superstar chebyshev array
548 zptChebyshevSize: `int`
549 Length of the zeropoint chebyshev array
550
551 Returns
552 -------
553 zptSchema: `lsst.afw.table.schema`
554 """
555
556 zptSchema = afwTable.Schema()
557
558 zptSchema.addField('visit', type=np.int32, doc='Visit number')
559 zptSchema.addField('detector', type=np.int32, doc='Detector ID number')
560 zptSchema.addField('fgcmFlag', type=np.int32, doc=('FGCM flag value: '
561 '1: Photometric, used in fit; '
562 '2: Photometric, not used in fit; '
563 '4: Non-photometric, on partly photometric night; '
564 '8: Non-photometric, on non-photometric night; '
565 '16: No zeropoint could be determined; '
566 '32: Too few stars for reliable gray computation'))
567 zptSchema.addField('fgcmZpt', type=np.float64, doc='FGCM zeropoint (center of CCD)')
568 zptSchema.addField('fgcmZptErr', type=np.float64,
569 doc='Error on zeropoint, estimated from repeatability + number of obs')
570 zptSchema.addField('fgcmfZptChebXyMax', type='ArrayD', size=2,
571 doc='maximum x/maximum y to scale to apply chebyshev parameters')
572 zptSchema.addField('fgcmfZptCheb', type='ArrayD',
573 size=zptChebyshevSize,
574 doc='Chebyshev parameters (flattened) for zeropoint')
575 zptSchema.addField('fgcmfZptSstarCheb', type='ArrayD',
576 size=superStarChebyshevSize,
577 doc='Chebyshev parameters (flattened) for superStarFlat')
578 zptSchema.addField('fgcmI0', type=np.float64, doc='Integral of the passband')
579 zptSchema.addField('fgcmI10', type=np.float64, doc='Normalized chromatic integral')
580 zptSchema.addField('fgcmR0', type=np.float64,
581 doc='Retrieved i0 integral, estimated from stars (only for flag 1)')
582 zptSchema.addField('fgcmR10', type=np.float64,
583 doc='Retrieved i10 integral, estimated from stars (only for flag 1)')
584 zptSchema.addField('fgcmGry', type=np.float64,
585 doc='Estimated gray extinction relative to atmospheric solution; '
586 'only for fgcmFlag <= 4 (see fgcmFlag) ')
587 zptSchema.addField('fgcmDeltaChrom', type=np.float64,
588 doc='Mean chromatic correction for stars in this ccd; '
589 'only for fgcmFlag <= 4 (see fgcmFlag)')
590 zptSchema.addField('fgcmZptVar', type=np.float64, doc='Variance of zeropoint over ccd')
591 zptSchema.addField('fgcmTilings', type=np.float64,
592 doc='Number of photometric tilings used for solution for ccd')
593 zptSchema.addField('fgcmFpGry', type=np.float64,
594 doc='Average gray extinction over the full focal plane '
595 '(same for all ccds in a visit)')
596 zptSchema.addField('fgcmFpGryBlue', type=np.float64,
597 doc='Average gray extinction over the full focal plane '
598 'for 25% bluest stars')
599 zptSchema.addField('fgcmFpGryBlueErr', type=np.float64,
600 doc='Error on Average gray extinction over the full focal plane '
601 'for 25% bluest stars')
602 zptSchema.addField('fgcmFpGryRed', type=np.float64,
603 doc='Average gray extinction over the full focal plane '
604 'for 25% reddest stars')
605 zptSchema.addField('fgcmFpGryRedErr', type=np.float64,
606 doc='Error on Average gray extinction over the full focal plane '
607 'for 25% reddest stars')
608 zptSchema.addField('fgcmFpVar', type=np.float64,
609 doc='Variance of gray extinction over the full focal plane '
610 '(same for all ccds in a visit)')
611 zptSchema.addField('fgcmDust', type=np.float64,
612 doc='Gray dust extinction from the primary/corrector'
613 'at the time of the exposure')
614 zptSchema.addField('fgcmFlat', type=np.float64, doc='Superstarflat illumination correction')
615 zptSchema.addField('fgcmAperCorr', type=np.float64, doc='Aperture correction estimated by fgcm')
616 zptSchema.addField('fgcmDeltaMagBkg', type=np.float64,
617 doc=('Local background correction from brightest percentile '
618 '(value set by deltaMagBkgOffsetPercentile) calibration '
619 'stars.'))
620 zptSchema.addField('exptime', type=np.float32, doc='Exposure time')
621 zptSchema.addField('filtername', type=str, size=10, doc='Filter name')
622
623 return zptSchema
624
625
626def makeZptCat(zptSchema, zpStruct):
627 """
628 Make the zeropoint catalog for persistence
629
630 Parameters
631 ----------
632 zptSchema: `lsst.afw.table.Schema`
633 Zeropoint catalog schema
634 zpStruct: `numpy.ndarray`
635 Zeropoint structure from fgcm
636
637 Returns
638 -------
639 zptCat: `afwTable.BaseCatalog`
640 Zeropoint catalog for persistence
641 """
642
643 zptCat = afwTable.BaseCatalog(zptSchema)
644 zptCat.reserve(zpStruct.size)
645
646 for filterName in zpStruct['FILTERNAME']:
647 rec = zptCat.addNew()
648 rec['filtername'] = filterName.decode('utf-8')
649
650 zptCat['visit'][:] = zpStruct[FGCM_EXP_FIELD]
651 zptCat['detector'][:] = zpStruct[FGCM_CCD_FIELD]
652 zptCat['fgcmFlag'][:] = zpStruct['FGCM_FLAG']
653 zptCat['fgcmZpt'][:] = zpStruct['FGCM_ZPT']
654 zptCat['fgcmZptErr'][:] = zpStruct['FGCM_ZPTERR']
655 zptCat['fgcmfZptChebXyMax'][:, :] = zpStruct['FGCM_FZPT_XYMAX']
656 zptCat['fgcmfZptCheb'][:, :] = zpStruct['FGCM_FZPT_CHEB']
657 zptCat['fgcmfZptSstarCheb'][:, :] = zpStruct['FGCM_FZPT_SSTAR_CHEB']
658 zptCat['fgcmI0'][:] = zpStruct['FGCM_I0']
659 zptCat['fgcmI10'][:] = zpStruct['FGCM_I10']
660 zptCat['fgcmR0'][:] = zpStruct['FGCM_R0']
661 zptCat['fgcmR10'][:] = zpStruct['FGCM_R10']
662 zptCat['fgcmGry'][:] = zpStruct['FGCM_GRY']
663 zptCat['fgcmDeltaChrom'][:] = zpStruct['FGCM_DELTACHROM']
664 zptCat['fgcmZptVar'][:] = zpStruct['FGCM_ZPTVAR']
665 zptCat['fgcmTilings'][:] = zpStruct['FGCM_TILINGS']
666 zptCat['fgcmFpGry'][:] = zpStruct['FGCM_FPGRY']
667 zptCat['fgcmFpGryBlue'][:] = zpStruct['FGCM_FPGRY_CSPLIT'][:, 0]
668 zptCat['fgcmFpGryBlueErr'][:] = zpStruct['FGCM_FPGRY_CSPLITERR'][:, 0]
669 zptCat['fgcmFpGryRed'][:] = zpStruct['FGCM_FPGRY_CSPLIT'][:, 2]
670 zptCat['fgcmFpGryRedErr'][:] = zpStruct['FGCM_FPGRY_CSPLITERR'][:, 2]
671 zptCat['fgcmFpVar'][:] = zpStruct['FGCM_FPVAR']
672 zptCat['fgcmDust'][:] = zpStruct['FGCM_DUST']
673 zptCat['fgcmFlat'][:] = zpStruct['FGCM_FLAT']
674 zptCat['fgcmAperCorr'][:] = zpStruct['FGCM_APERCORR']
675 zptCat['fgcmDeltaMagBkg'][:] = zpStruct['FGCM_DELTAMAGBKG']
676 zptCat['exptime'][:] = zpStruct['EXPTIME']
677
678 return zptCat
679
680
682 """
683 Make the atmosphere schema
684
685 Returns
686 -------
687 atmSchema: `lsst.afw.table.Schema`
688 """
689
690 atmSchema = afwTable.Schema()
691
692 atmSchema.addField('visit', type=np.int32, doc='Visit number')
693 atmSchema.addField('pmb', type=np.float64, doc='Barometric pressure (mb)')
694 atmSchema.addField('pwv', type=np.float64, doc='Water vapor (mm)')
695 atmSchema.addField('tau', type=np.float64, doc='Aerosol optical depth')
696 atmSchema.addField('alpha', type=np.float64, doc='Aerosol slope')
697 atmSchema.addField('o3', type=np.float64, doc='Ozone (dobson)')
698 atmSchema.addField('secZenith', type=np.float64, doc='Secant(zenith) (~ airmass)')
699 atmSchema.addField('cTrans', type=np.float64, doc='Transmission correction factor')
700 atmSchema.addField('lamStd', type=np.float64, doc='Wavelength for transmission correction')
701
702 return atmSchema
703
704
705def makeAtmCat(atmSchema, atmStruct):
706 """
707 Make the atmosphere catalog for persistence
708
709 Parameters
710 ----------
711 atmSchema: `lsst.afw.table.Schema`
712 Atmosphere catalog schema
713 atmStruct: `numpy.ndarray`
714 Atmosphere structure from fgcm
715
716 Returns
717 -------
718 atmCat: `lsst.afw.table.BaseCatalog`
719 Atmosphere catalog for persistence
720 """
721
722 atmCat = afwTable.BaseCatalog(atmSchema)
723 atmCat.resize(atmStruct.size)
724
725 atmCat['visit'][:] = atmStruct['VISIT']
726 atmCat['pmb'][:] = atmStruct['PMB']
727 atmCat['pwv'][:] = atmStruct['PWV']
728 atmCat['tau'][:] = atmStruct['TAU']
729 atmCat['alpha'][:] = atmStruct['ALPHA']
730 atmCat['o3'][:] = atmStruct['O3']
731 atmCat['secZenith'][:] = atmStruct['SECZENITH']
732 atmCat['cTrans'][:] = atmStruct['CTRANS']
733 atmCat['lamStd'][:] = atmStruct['LAMSTD']
734
735 return atmCat
736
737
738def makeStdSchema(nBands):
739 """
740 Make the standard star schema
741
742 Parameters
743 ----------
744 nBands: `int`
745 Number of bands in standard star catalog
746
747 Returns
748 -------
749 stdSchema: `lsst.afw.table.Schema`
750 """
751
752 stdSchema = afwTable.SimpleTable.makeMinimalSchema()
753 stdSchema.addField('ngood', type='ArrayI', doc='Number of good observations',
754 size=nBands)
755 stdSchema.addField('ntotal', type='ArrayI', doc='Number of total observations',
756 size=nBands)
757 stdSchema.addField('mag_std_noabs', type='ArrayF',
758 doc='Standard magnitude (no absolute calibration)',
759 size=nBands)
760 stdSchema.addField('magErr_std', type='ArrayF',
761 doc='Standard magnitude error',
762 size=nBands)
763 stdSchema.addField('npsfcand', type='ArrayI',
764 doc='Number of observations flagged as psf candidates',
765 size=nBands)
766
767 return stdSchema
768
769
770def makeStdCat(stdSchema, stdStruct, goodBands):
771 """
772 Make the standard star catalog for persistence
773
774 Parameters
775 ----------
776 stdSchema: `lsst.afw.table.Schema`
777 Standard star catalog schema
778 stdStruct: `numpy.ndarray`
779 Standard star structure in FGCM format
780 goodBands: `list`
781 List of good band names used in stdStruct
782
783 Returns
784 -------
785 stdCat: `lsst.afw.table.BaseCatalog`
786 Standard star catalog for persistence
787 """
788
789 stdCat = afwTable.SimpleCatalog(stdSchema)
790 stdCat.resize(stdStruct.size)
791
792 stdCat['id'][:] = stdStruct['FGCM_ID']
793 stdCat['coord_ra'][:] = stdStruct['RA'] * geom.degrees
794 stdCat['coord_dec'][:] = stdStruct['DEC'] * geom.degrees
795 stdCat['ngood'][:, :] = stdStruct['NGOOD'][:, :]
796 stdCat['ntotal'][:, :] = stdStruct['NTOTAL'][:, :]
797 stdCat['mag_std_noabs'][:, :] = stdStruct['MAG_STD'][:, :]
798 stdCat['magErr_std'][:, :] = stdStruct['MAGERR_STD'][:, :]
799 stdCat['npsfcand'][:, :] = stdStruct['NPSFCAND'][:, :]
800
801 md = PropertyList()
802 md.set("BANDS", list(goodBands))
803 stdCat.setMetadata(md)
804
805 return stdCat
806
807
808def computeApertureRadiusFromDataRef(dataRef, fluxField):
809 """
810 Compute the radius associated with a CircularApertureFlux field or
811 associated slot.
812
813 Parameters
814 ----------
815 dataRef : `lsst.daf.persistence.ButlerDataRef` or
816 `lsst.daf.butler.DeferredDatasetHandle`
817 fluxField : `str`
818 CircularApertureFlux or associated slot.
819
820 Returns
821 -------
822 apertureRadius : `float`
823 Radius of the aperture field, in pixels.
824
825 Raises
826 ------
827 RuntimeError: Raised if flux field is not a CircularApertureFlux, ApFlux,
828 apFlux, or associated slot.
829 """
830 # TODO: Move this method to more general stack method in DM-25775
831 if isinstance(dataRef, dafPersist.ButlerDataRef):
832 # Gen2 dataRef
833 datasetType = dataRef.butlerSubset.datasetType
834 else:
835 # Gen3 dataRef
836 datasetType = dataRef.ref.datasetType.name
837
838 if datasetType == 'src':
839 schema = dataRef.get(datasetType='src_schema').schema
840 try:
841 fluxFieldName = schema[fluxField].asField().getName()
842 except LookupError:
843 raise RuntimeError("Could not find %s or associated slot in schema." % (fluxField))
844 # This may also raise a RuntimeError
845 apertureRadius = computeApertureRadiusFromName(fluxFieldName)
846 else:
847 # This is a sourceTable_visit
848 apertureRadius = computeApertureRadiusFromName(fluxField)
849
850 return apertureRadius
851
852
854 """
855 Compute the radius associated with a CircularApertureFlux or ApFlux field.
856
857 Parameters
858 ----------
859 fluxField : `str`
860 CircularApertureFlux or ApFlux
861
862 Returns
863 -------
864 apertureRadius : `float`
865 Radius of the aperture field, in pixels.
866
867 Raises
868 ------
869 RuntimeError: Raised if flux field is not a CircularApertureFlux,
870 ApFlux, or apFlux.
871 """
872 # TODO: Move this method to more general stack method in DM-25775
873 m = re.search(r'(CircularApertureFlux|ApFlux|apFlux)_(\d+)_(\d+)_', fluxField)
874
875 if m is None:
876 raise RuntimeError(f"Flux field {fluxField} does not correspond to a CircularApertureFlux or ApFlux")
877
878 apertureRadius = float(m.groups()[1]) + float(m.groups()[2])/10.
879
880 return apertureRadius
881
882
883def extractReferenceMags(refStars, bands, filterMap):
884 """
885 Extract reference magnitudes from refStars for given bands and
886 associated filterMap.
887
888 Parameters
889 ----------
890 refStars : `lsst.afw.table.BaseCatalog`
891 FGCM reference star catalog
892 bands : `list`
893 List of bands for calibration
894 filterMap: `dict`
895 FGCM mapping of filter to band
896
897 Returns
898 -------
899 refMag : `np.ndarray`
900 nstar x nband array of reference magnitudes
901 refMagErr : `np.ndarray`
902 nstar x nband array of reference magnitude errors
903 """
904 # After DM-23331 fgcm reference catalogs have FILTERNAMES to prevent
905 # against index errors and allow more flexibility in fitting after
906 # the build stars step.
907
908 md = refStars.getMetadata()
909 if 'FILTERNAMES' in md:
910 filternames = md.getArray('FILTERNAMES')
911
912 # The reference catalog that fgcm wants has one entry per band
913 # in the config file
914 refMag = np.zeros((len(refStars), len(bands)),
915 dtype=refStars['refMag'].dtype) + 99.0
916 refMagErr = np.zeros_like(refMag) + 99.0
917 for i, filtername in enumerate(filternames):
918 # We are allowed to run the fit configured so that we do not
919 # use every column in the reference catalog.
920 try:
921 band = filterMap[filtername]
922 except KeyError:
923 continue
924 try:
925 ind = bands.index(band)
926 except ValueError:
927 continue
928
929 refMag[:, ind] = refStars['refMag'][:, i]
930 refMagErr[:, ind] = refStars['refMagErr'][:, i]
931
932 else:
933 # Continue to use old catalogs as before.
934 refMag = refStars['refMag'][:, :]
935 refMagErr = refStars['refMagErr'][:, :]
936
937 return refMag, refMagErr
938
939
940def lookupStaticCalibrations(datasetType, registry, quantumDataId, collections):
941 instrument = Instrument.fromName(quantumDataId["instrument"], registry)
942 unboundedCollection = instrument.makeUnboundedCalibrationRunName()
943
944 return registry.queryDatasets(datasetType,
945 dataId=quantumDataId,
946 collections=[unboundedCollection])
def extractReferenceMags(refStars, bands, filterMap)
Definition: utilities.py:883
def lookupStaticCalibrations(datasetType, registry, quantumDataId, collections)
Definition: utilities.py:940
def computeApertureRadiusFromDataRef(dataRef, fluxField)
Definition: utilities.py:808
def makeStdSchema(nBands)
Definition: utilities.py:738
def makeAtmCat(atmSchema, atmStruct)
Definition: utilities.py:705
def makeConfigDict(config, log, camera, maxIter, resetFitParameters, outputZeropoints, lutFilterNames, tract=None)
Definition: utilities.py:51
def translateFgcmLut(lutCat, physicalFilterMap)
Definition: utilities.py:218
def computeReferencePixelScale(camera)
Definition: utilities.py:467
def makeZptCat(zptSchema, zpStruct)
Definition: utilities.py:626
def makeStdCat(stdSchema, stdStruct, goodBands)
Definition: utilities.py:770
def computeApertureRadiusFromName(fluxField)
Definition: utilities.py:853
def computeApproxPixelAreaFields(camera)
Definition: utilities.py:495
def makeZptSchema(superStarChebyshevSize, zptChebyshevSize)
Definition: utilities.py:540
def computeCcdOffsets(camera, defaultOrientation)
Definition: utilities.py:399
def translateVisitCatalog(visitCat)
Definition: utilities.py:348