Coverage for python/lsst/pipe/base/executionButlerBuilder.py : 15%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of pipe_base.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21from __future__ import annotations
23__all__ = ("buildExecutionButler", )
25import io
27from collections import defaultdict
28import itertools
29from typing import Callable, DefaultDict, Mapping, Optional, Set, Tuple, Iterable, List, Union
31from lsst.daf.butler import (DatasetRef, DatasetType, Butler, DataCoordinate, ButlerURI, Config)
32from lsst.daf.butler.core.utils import getClassOf
33from lsst.daf.butler.transfers import RepoExportContext
34from lsst.daf.butler.core.repoRelocation import BUTLER_ROOT_TAG
36from .graph import QuantumGraph, QuantumNode
37from .pipeline import PipelineDatasetTypes
39DataSetTypeMap = Mapping[DatasetType, Set[DataCoordinate]]
42def _accumulate(
43 graph: QuantumGraph,
44 dataset_types: PipelineDatasetTypes,
45) -> Tuple[Set[DatasetRef], DataSetTypeMap]:
46 # accumulate the DatasetRefs that will be transferred to the execution
47 # registry
49 # exports holds all the existing data that will be migrated to the
50 # execution butler
51 exports: Set[DatasetRef] = set()
53 # inserts is the mapping of DatasetType to dataIds for what is to be
54 # inserted into the registry. These are the products that are expected
55 # to be produced during processing of the QuantumGraph
56 inserts: DefaultDict[DatasetType, Set[DataCoordinate]] = defaultdict(set)
58 # Add inserts for initOutputs (including initIntermediates); these are
59 # defined fully by their DatasetType, because they have no dimensions, and
60 # they are by definition not resolved. initInputs are part of Quantum and
61 # that's the only place the graph stores the dataset IDs, so we process
62 # them there even though each Quantum for a task has the same ones.
63 for dataset_type in itertools.chain(dataset_types.initIntermediates, dataset_types.initOutputs):
64 inserts[dataset_type].add(DataCoordinate.makeEmpty(dataset_type.dimensions.universe))
66 n: QuantumNode
67 for quantum in (n.quantum for n in graph):
68 for attrName in ("initInputs", "inputs", "outputs"):
69 attr: Mapping[DatasetType, Union[DatasetRef, List[DatasetRef]]] = getattr(quantum, attrName)
71 for type, refs in attr.items():
72 # This if block is because init inputs has a different
73 # signature for its items
74 if not isinstance(refs, list):
75 refs = [refs]
76 # iterate over all the references, if it has an id, it
77 # means it exists and should be exported, if not it should
78 # be inserted into the new registry
79 for ref in refs:
80 if ref.id is not None:
81 exports.add(ref)
82 else:
83 if ref.isComponent():
84 # We can't insert a component, and a component will
85 # be part of some other upstream dataset, so it
86 # should be safe to skip them here
87 continue
88 inserts[type].add(ref.dataId)
89 return exports, inserts
92def _discoverCollections(butler: Butler, collections: Iterable[str]) -> set[str]:
93 # Recurse through any discovered collections to make sure all collections
94 # are exported. This exists because I ran into a situation where some
95 # collections were not properly being discovered and exported. This
96 # method may be able to be removed in the future if collection export
97 # logic changes
98 collections = set(collections)
99 while True:
100 discoveredCollections = set(butler.registry.queryCollections(collections, flattenChains=True,
101 includeChains=True))
102 if len(discoveredCollections) > len(collections):
103 collections = discoveredCollections
104 else:
105 break
106 return collections
109def _export(butler: Butler, collections: Optional[Iterable[str]], exports: Set[DatasetRef],
110 inserts: DataSetTypeMap) -> io.StringIO:
111 # This exports the datasets that exist in the input butler using
112 # daf butler objects, however it reaches in deep and does not use the
113 # public methods so that it can export it to a string buffer and skip
114 # disk access.
115 yamlBuffer = io.StringIO()
116 # Yaml is hard coded, since the class controls both ends of the
117 # export/import
118 BackendClass = getClassOf(butler._config["repo_transfer_formats", "yaml", "export"])
119 backend = BackendClass(yamlBuffer)
120 exporter = RepoExportContext(butler.registry, butler.datastore, backend, directory=None, transfer=None)
121 exporter.saveDatasets(exports)
123 # Need to ensure that the dimension records for outputs are
124 # transferred.
125 for _, dataIds in inserts.items():
126 exporter.saveDataIds(dataIds)
128 # Look for any defined collection, if not get the defaults
129 if collections is None:
130 collections = butler.registry.defaults.collections
132 # look up all collections associated with those inputs, this follows
133 # all chains to make sure everything is properly exported
134 for c in _discoverCollections(butler, collections):
135 exporter.saveCollection(c)
136 exporter._finish()
138 # reset the string buffer to the beginning so the read operation will
139 # actually *see* the data that was exported
140 yamlBuffer.seek(0)
141 return yamlBuffer
144def _setupNewButler(butler: Butler, outputLocation: ButlerURI, dirExists: bool) -> Butler:
145 # Set up the new butler object at the specified location
146 if dirExists:
147 # Remove the existing table, if the code got this far and this exists
148 # clobber must be true
149 executionRegistry = outputLocation.join("gen3.sqlite3")
150 if executionRegistry.exists():
151 executionRegistry.remove()
152 else:
153 outputLocation.mkdir()
155 # Copy the existing butler config, modifying the location of the
156 # registry to the specified location.
157 # Preserve the root path from the existing butler so things like
158 # file data stores continue to look at the old location.
159 config = Config(butler._config)
160 config["root"] = outputLocation.geturl()
161 config["allow_put_of_predefined_dataset"] = True
162 config["registry", "db"] = "sqlite:///<butlerRoot>/gen3.sqlite3"
164 # Remove any namespace that may be set in main registry.
165 config.pop(("registry", "namespace"), None)
167 # record the current root of the datastore if it is specified relative
168 # to the butler root
169 if config.get(("datastore", "root")) == BUTLER_ROOT_TAG:
170 config["datastore", "root"] = butler._config.configDir.geturl()
171 config["datastore", "trust_get_request"] = True
173 # Requires that we use the dimension configuration from the original
174 # butler and not use the defaults.
175 config = Butler.makeRepo(root=outputLocation, config=config,
176 dimensionConfig=butler.registry.dimensions.dimensionConfig,
177 overwrite=True, forceConfigRoot=False)
179 # Return a newly created butler
180 return Butler(config, writeable=True)
183def _import(yamlBuffer: io.StringIO,
184 newButler: Butler,
185 inserts: DataSetTypeMap,
186 run: str,
187 butlerModifier: Optional[Callable[[Butler], Butler]]
188 ) -> Butler:
189 # This method takes the exports from the existing butler, imports
190 # them into the newly created butler, and then inserts the datasets
191 # that are expected to be produced.
193 # import the existing datasets
194 newButler.import_(filename=yamlBuffer, format="yaml", reuseIds=True, transfer="auto")
196 # If there is modifier callable, run it to make necessary updates
197 # to the new butler.
198 if butlerModifier is not None:
199 newButler = butlerModifier(newButler)
201 # Register datasets to be produced and insert them into the registry
202 for dsType, dataIds in inserts.items():
203 newButler.registry.registerDatasetType(dsType)
204 newButler.registry.insertDatasets(dsType, dataIds, run)
206 return newButler
209def buildExecutionButler(butler: Butler,
210 graph: QuantumGraph,
211 outputLocation: Union[str, ButlerURI],
212 run: str,
213 *,
214 clobber: bool = False,
215 butlerModifier: Optional[Callable[[Butler], Butler]] = None,
216 collections: Optional[Iterable[str]] = None
217 ) -> Butler:
218 r"""buildExecutionButler is a function that is responsible for exporting
219 input `QuantumGraphs` into a new minimal `~lsst.daf.butler.Butler` which
220 only contains datasets specified by the `QuantumGraph`. These datasets are
221 both those that already exist in the input `~lsst.daf.butler.Butler`, and
222 those that are expected to be produced during the execution of the
223 `QuantumGraph`.
225 Parameters
226 ----------
227 butler : `lsst.daf.butler.Bulter`
228 This is the existing `~lsst.daf.butler.Butler` instance from which
229 existing datasets will be exported. This should be the
230 `~lsst.daf.butler.Butler` which was used to create any `QuantumGraphs`
231 that will be converted with this object.
232 graph : `QuantumGraph`
233 Graph containing nodes that are to be exported into an execution
234 butler
235 outputLocation : `str` or `~lsst.daf.butler.ButlerURI`
236 URI Location at which the execution butler is to be exported. May be
237 specified as a string or a ButlerURI instance.
238 run : `str` optional
239 The run collection that the exported datasets are to be placed in. If
240 None, the default value in registry.defaults will be used.
241 clobber : `bool`, Optional
242 By default a butler will not be created if a file or directory
243 already exists at the output location. If this is set to `True`
244 what is at the location will be deleted prior to running the
245 export. Defaults to `False`
246 butlerModifier : `~typing.Callable`, Optional
247 If supplied this should be a callable that accepts a
248 `~lsst.daf.butler.Butler`, and returns an instantiated
249 `~lsst.daf.butler.Butler`. This callable may be used to make any
250 modifications to the `~lsst.daf.butler.Butler` desired. This
251 will be called after importing all datasets that exist in the input
252 `~lsst.daf.butler.Butler` but prior to inserting Datasets expected
253 to be produced. Examples of what this method could do include
254 things such as creating collections/runs/ etc.
255 collections : `~typing.Iterable` of `str`, Optional
256 An iterable of collection names that will be exported from the input
257 `~lsst.daf.butler.Butler` when creating the execution butler. If not
258 supplied the `~lsst.daf.butler.Butler`\ 's `~lsst.daf.butler.Registry`
259 default collections will be used.
261 Returns
262 -------
263 executionButler : `lsst.daf.butler.Butler`
264 An instance of the newly created execution butler
266 Raises
267 ------
268 FileExistsError
269 Raised if something exists in the filesystem at the specified output
270 location and clobber is `False`
271 NotADirectoryError
272 Raised if specified output URI does not correspond to a directory
273 """
274 # We know this must refer to a directory.
275 outputLocation = ButlerURI(outputLocation, forceDirectory=True)
277 # Do this first to Fail Fast if the output exists
278 if (dirExists := outputLocation.exists()) and not clobber:
279 raise FileExistsError("Cannot create a butler at specified location, location exists")
280 if not outputLocation.isdir():
281 raise NotADirectoryError("The specified output URI does not appear to correspond to a directory")
283 # Gather all DatasetTypes from the Python and check any that already exist
284 # in the registry for consistency. This does not check that all dataset
285 # types here exist, because they might want to register dataset types
286 # later. It would be nice to also check that, but to that we would need to
287 # be told whether they plan to register dataset types later (DM-30845).
288 dataset_types = PipelineDatasetTypes.fromPipeline(graph.iterTaskGraph(), registry=butler.registry)
290 exports, inserts = _accumulate(graph, dataset_types)
291 yamlBuffer = _export(butler, collections, exports, inserts)
293 newButler = _setupNewButler(butler, outputLocation, dirExists)
295 return _import(yamlBuffer, newButler, inserts, run, butlerModifier)