Coverage for tests/test_tex_util.py : 21%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of faro.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
22"""Unit tests for the metrics measurement system.
23"""
25import unittest
26import os
27import numpy as np
29from lsst.utils import getPackageDir
30from lsst.afw.table import SimpleCatalog
31from lsst.faro.utils.tex import (TraceSize, PsfTraceSizeDiff,
32 E1, E2, E1Resids, E2Resids,
33 RhoStatistics)
36DATADIR = os.path.join(getPackageDir('faro'), 'tests', 'data')
39class TEXUtilTest(unittest.TestCase):
40 """Test TEX utility functions."""
42 def loadData(self):
43 """Helper to load data to process."""
44 cat_file = 'src_HSC_i_HSC-I_903986_0_31_HSC_runs_ci_hsc_20210407T021858Z.fits'
45 cat = SimpleCatalog.readFits(os.path.join(DATADIR, cat_file))
47 # selection = np.isfinite(cat.get('e1')) & np.isfinite(cat.get('e2'))
48 selection = np.tile(True, len(cat))
50 return cat.subset(selection).copy(deep=True)
52 def testEllipticityDefinitions(self):
53 """Test ellipticity functors."""
55 cat = self.loadData()
57 column = 'slot_Shape'
58 columnPsf = 'slot_PsfShape'
60 trace = TraceSize(column)
61 result = np.nanmean(trace(cat))
62 expected = 4.36377821335775
63 self.assertEqual(result, expected)
65 traceDiff = PsfTraceSizeDiff(column, columnPsf)
66 result = np.nanmean(traceDiff(cat))
67 expected = 25.301812428201995
68 self.assertEqual(result, expected)
70 e1 = E1(column)
71 result = np.nanmean(e1(cat))
72 expected = 0.0012636175684993878
73 self.assertEqual(result, expected)
75 e1 = E1(column, shearConvention=True)
76 result = np.nanmean(e1(cat))
77 expected = 0.00043009504274617235
78 self.assertEqual(result, expected)
80 e2 = E2(column)
81 result = np.nanmean(e2(cat))
82 expected = 0.080076033827269
83 self.assertEqual(result, expected)
85 e2 = E2(column, shearConvention=True)
86 result = np.nanmean(e2(cat))
87 expected = 0.04194134295796996
88 self.assertEqual(result, expected)
90 e1Resids = E1Resids(column, columnPsf)
91 result = np.nanmean(e1Resids(cat))
92 expected = -0.0009098947676481413
93 self.assertEqual(result, expected)
95 e2Resids = E2Resids(column, columnPsf)
96 result = np.nanmean(e2Resids(cat))
97 expected = -0.02280606766168935
98 self.assertEqual(result, expected)
100 def testRhoStats(self):
101 """Compute six Rho statistics."""
103 cat = self.loadData()
104 column = 'slot_Shape'
105 columnPsf = 'slot_PsfShape'
107 treecorrKwargs = dict(nbins=5,
108 min_sep=0.25,
109 max_sep=1,
110 sep_units='arcmin',
111 brute=True)
112 rhoStatistics = RhoStatistics(column, columnPsf, **treecorrKwargs)
113 result = rhoStatistics(cat)
115 expected = [0.2344471639428089,
116 0.0010172306766334468,
117 -0.0021045081490440086,
118 0.0028001762296714734,
119 -0.0013278190624450364,
120 0.005010295952053786]
122 self.assertAlmostEqual(np.mean(result[0].xi), expected[0], places=7)
123 self.assertAlmostEqual(np.mean(result[1].xip), expected[1], places=7)
124 self.assertAlmostEqual(np.mean(result[2].xip), expected[2], places=7)
125 self.assertAlmostEqual(np.mean(result[3].xip), expected[3], places=7)
126 self.assertAlmostEqual(np.mean(result[4].xip), expected[4], places=7)
127 self.assertAlmostEqual(np.mean(result[5].xip), expected[5], places=7)
130if __name__ == "__main__": 130 ↛ 131line 130 didn't jump to line 131, because the condition on line 130 was never true
131 unittest.main()