
---- 2015-11-12 Song Huang ----

The code for the fakePipe can be found here: https://github.com/clackner2007/fake-sources

This project is to add fake stellar and galaxy sources to the HSC data processing. We use galsim to generate fake galaxy
sources. Stellar (PSF) sources are simply taken as the measured PSF. In the current incarnation, the pipeline accepts
fake sources after the calibration but before measurement when processing single CCDs. This way, the fake sources
don't affect things like PSF determination. Once the sources are added, they are deblended and measured just like the
rest of the sources, and included in the output catalogs.

This code depends on the HSC pipeline (version 3.3.3 or later), and needs to have Galsim built against the pipeline
python. For some of the additional scripts (makeRaDec, matchFakes) the astropy package is also necessary.
For example, on Master@IPMU, one just needs to setup the following:

export PYTHONPATH=/home/clackner/.local/lib/python2.7/site-packages:${PYTHONPATH}
setup -v hscPipe 3.9.0
setup -v -j astrometry_net_data ps1_pv1.2c
setup -v -r path/to/fake-sources/

The first export is only to get astropy on PYTHONPATH, so adjust according to your local installation.

For more information about Galsim , please check [here https://github.com/GalSim-developers/GalSim]. The current
version used by fakePipe is v1.3.0. To install Galsim , one also needs to install the TMV library (details can be found
here: https://code.google.com/p/tmv-cpp/wiki/Installation).

On Master@IPMU, one can setup Galsim by:

setup -v -j -r /home/clackner/src/tmv0.72/
setup -v -j -r /home/song/code/GalSim-1.3.0/

Change the location to Galsim and TMV based on your installation.

We use several examples to show you how to run fakePipe.

The fakePipe accepts fake galaxies described by either single Sersic or double Sersic models. For the example here, we
are only considering the single Sersic models. The single Sersic fitting results of galaxies down to F814W=25.0 mag on
HST/ACS images are used as the parent catalog (private communication with Claire Lackner).
The following columns are necessary for single Sersic models:

Magnitude: either magnitude in single band: mag ; or magnitude in different bands: mag_g , mag_r , et al.
reff (half light radius; in unit of arcsec); sersic_n (Sersic index; b_a (axis ratio), theta (position

angle)
Possible shears: g1 and g2

Manual of the fakePipe

Basic Information:

Setup:

Running:

1. MultiBand Test of Galaxy Photometry

(a). Prepare the input catalog

https://github.com/GalSim-developers/GalSim
https://code.google.com/p/tmv-cpp/wiki/Installation

To make sure that Galsim can generate images of fake galaxy without any problem, one need to make sure that
0.25 < b/a < 1.0 ; And, sersic_n < 0.5 or sersic_n > 6.0 often indicate unrealistic models; High

Sersic index can also leads to longer time for fake generation and large snapshot image (We truncate the profile at 10
times of the Re).
For this example, we are using cosmos_23.5_multiband.fits which includes 14113 fake galaxies down to 23.5
magnitude; the same magnitude value is used for all five bands. The catalog can be found at
/lustre/Subaru/SSP/rerun/song/fake on Master@IPMU.

Now, we need to decide the (RA, DEC) of the fake galaxies on the real images. In principle, you can choose the
coordinates in any way you want, and two columns: RA and Dec to the input catalog. But, in this example, we show
you how to randomly assign coordinates to input catalog. There are two ways to do this:

For most of the tests, we will be working at the Tract level. It is easier to use the fakePipe tool: makeSourceList.py :
Basic usage:
bash

makeSourceList.py DATA_DIR --rerun=RERUN_DIR \

--id tract=TRACT_ID filter='HSC-I' patch='4,4' \

-c inputCat=INPUT_CATLOG rhoFakes=RHO_FAKES \

outDir=OUT_DIR rejMask=REJ_MASK innerTract=True uniqueID=True

DATA_DIR : Locations of the reruns;
--rerun : Name of the data rerun
--id : HSC data ID for coadd image; The only useful one here is the Tract number; The Patch number and filter

are dummy ones.
outDir : Location for the output catalogs.
inputCat : Name of the input fake galaxies catalog; If no catalog is provided, a catalog that only contains the RA,

DEC will be saved.
rhoFakes : Number of fakes to be put on one Patch; Default number is 500;
rejMask : An optional mask in "well-known binary" format to exclude regions that have no useful data on it. This

function depends on the Shapely : Python library. Please contact Song Huang in case you want to use this for
certain Tract.
innerTract : Only add fakes to the InnerTract region; Default is True.
uniqueID : Rename the ID column, use the index instead to make sure the IDs are unique.

Example command:

makeSourceList.py /lustre/Subaru/SSP \
 --rerun=yasuda/SSP3.8.5_20150725 \
 --id tract=8524 filter='HSC-I' patch='4,4' \
 -c inputCat='cosmos_23.5_multiband.fits' \
 rejMask='ssp385_wide_8524_HSC-I_nodata_big.wkb' \
 rhoFakes=300 innerTract=True uniqueID=True

Since 5-bands magnitudes are included in the input catalog, 5 separated catalogs will be generated:
src_TRACT_radec_FILTER.fits

In the command line output, you can find the number of fake galaxies in the output catalogs, like:

Filter through : ssp385_wide_8524_HSC-I_nodata_big.wkb
24295 out of 24300 objects left

In case you want to add fakes to only 1 CCD, or in a square region larger than 1 Tract, you can use the
makeRaDecCat function. Right now, makeRaDecCat.py accepts either a dataId ({visit, ccd} or {tract, patch, filter}) or a

(b). Random (RA, DEC) assignment

[1]. makeSourceList.py (recommended):

[2]. makeRaDecCat.py:

range of {RA, Dec} as input.
The code will return a list of {RA,Dec} pairs; It also accepts an input fits catalog, and will add two columns to the catalog
(RA, Dec). Make sure the number of galaxies in the input catalog is equal or smaller than the number of random RA,Dec
pairs (This can be improved later). The output catalog will have a _radec suffix.
And, an optional rad parameter is available as the minimum allowed separation (in unit of arcsec) between any of
these random RA, Dec pairs.
Example usages:

from fakes import makeRaDecCat
rangeRaDec = [123.4, 123.8, 12.0, 13.0]
inputCat = 'fakeExp.fits'
randomRaDec = makeRaDecCat(50, rangeRaDec=rangeRaDec, rad=10.0, inputCat=inputCat)

or

dataId = {tract:0, patch:'4,5', filter:'HSC-I'}
rootDir = '/lustre/Subaru/SSP/rerun/song/cosmos-i2'
inputCat = 'fakeExp.fits'
randomRaDec = makeRaDecCat(50, dataId=dataId, rad=10.0, inputCat=inputCat, r
ootDir=rootDir)

Right now, the runAddFakes.py still only works at single Visit level. This gives you the freedom to choose which
Visits you want to work on. But, it also means that you need to manually figure out the input Visits to coadds of certain
band, and manually add fakes to these images.
Use the tractFindVisits.py tool in the fakePipe. Basic usage is:
bash tractFindVisits.py RERUN TRACT_ID --filter FILTER --patch PATCH_ID \ --dataDir DATA_DIR

Default filter is HSC-I ; and Default dataDir is: /lustre/Subaru/SSP

Examples:

tractFindVisits.py 'yasuda/SSP3.8.5_20150725' 8254 \
 --patch='4,4' --filter='HSC-I'

The above command will search the input Visits to one patch, and output is like:

Input visits for Tract=8524 Filter=HSC-I Patch=4,4

 # Input CCDs includes 12 Visits

7288^7310^7350^7352^7364^7378^7394^7402^14144^14164^14166^14178

For HSC-R : 11426^11462^11496^11498^11522^11524

For HSC-G : 9840^9880^9882^9892^9908^9916^9918^11634^11672

For HSC-Z : 9696^9718^9742^9744^9754^9766^9782^9790^13284^15078^15142^15154

For HSC-Y : 6466^6488^6490^6536^6538^6558^13144^13146^13194^13212^16098^16106

It also works for the entire Tract:

tractFindVisits.py 'yasuda/SSP3.8.5_20150725' 9347

To visualize the locations of these Visits to the Tract, you can use the showTractVisit.py command. The basic
usage is:

(c). Add fake galaxies to the images

[1] Decide the Visits you want to work on

showTractVisit.py RERUN TRACT VISITS -p

RERUN , TRACT , VISITS : Define the datasets, the target Tract , and the selected Visits

-p : Overplot the boundaries of the patches within this Tract

For example:

showTractVisit.py /lustre/Subaru/SSP/rerun/yasuda/SSP3.8.5_20150725 8524 \
 7288^7310^7350^7352^7364^7378^7394^7402^14144^14164^14166^14178 -p

Will draw a figure like this:

It clearly shows that for a typical WIDE field Tract , the number of Visits we need to consider during the fake
tests can be much larger than 3.

For each band, one needs to prepare one configuration file for runAddFakes.py ; Example config file,
addfake_i.config , contains:

from fakes import positionGalSimFakes
root.fakes.retarget(positionGalSimFakes.PositionGalSimFakesTask)
root.fakes.galList = INPUT_CATALOG
root.fakes.galType = 'sersic'
root.fakes.maxMargin = 150
root.fakes.addShear = False

In case your input catalog includes the g1, g2 shears, set addShear = True

Now, you can run runAddFakes.py to add fake galaxies to the images. You need to manually run this for each band.

[2] Prepare the config file for runAddFakes.py

[3] Add fake galaxies to Single Exposure Images by running runAddFakes.py

The basic usage is:

runAddFakes.py DATA_DIR --rerun OLD_RERUN:NEW_RERUN --id visit=VISIT_LIST \
 --clobber-config -C CONFIG_FILE --do-exec --queue small --job JOB_NAME \
 --nodes 4 --procs 12

DATA_DIR : location of the data, /lustre/Subaru/SSP/

OLD_RERUN : The rerun contains the input images
NEW_RERUN : Output rerun for images with fake galaxies added
VISIT_LIST : List of input visits to go through,
7288^7310^7350^7352^7364^7378^7394^7402^14144^14164^14166^14178

CONFIG_FILE : Configuration file from the above section, addfake_i.config

JOB_NAME : Name of the qsub job

For example:

runAddFakes.py /lustre/Subaru/SSP/ \
 --rerun yasuda/SSP3.8.5_20150725:song/fake/multi_test1 \
 --id visit=7288^7310^7350^7352^7364^7378^7394^7402^14144^14164^14166^14178 \
 --clobber-config -C addfake_i.config \
 --queue small --job addfake_i_1 --nodes 8 --procs 12

Will creat a new rerun folder called song/fake/multi_test1 ; You can check the job using qstat ; And, you
should start to see many log files from qsub. When the job finishes, you should check the job summary file to make sure
there is no error. Also, you can check two output files:

runAddFake.skipped : For different reasons, the addFakes.py sometimes have to skip certain fake
galaxies. In this file, you can see the id of the fake and the reason why it was skipped: 199053 , bboxEdge ;
bboxEdge means that the (RA, Dec) is in the gap between CCDs, which is Ok; In case you see the reason

involves GalSim , it indicates that GalSim fails to generate the image of fake galaxy for some reason. You
should check the model parameter of those fake models to make sure the parameters are reasonable.
runAddFake.missingCCD : The addFakes.py will go through all the CCDs in a Visit to check whether we

should put any fake on it. However, in some rare occasions, FITS files for certain CCDs could be problematic (Often
indicated by the abnormal file size of the CORR-XXXXX.fits file). There is nothing we can do here, so we simply skip
them. You can check this file for information of these "missing" CCDs.

At this point, you may want to check the fake galaxies on the single CCD image. In the test folder of fakePipe, a
short script, compFakeGalaxy.py , can be used for this purpose. It generates a three-panel figure. Left is the original
image, middle is the one with fake objects on it, and the right one is the difference between them, so you should be able
to see the fake galaxies on this one clearly. The usage is:

python compFakeGalaxy.py OLD_RERUN NEW_RERUN VISIT CCD

For example:

python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 7388 40

Here, we assume the rootDir for data is: /lustre/Subaru/SSP ; If your data are stored somewhere else, you can
easily change the script to point it to somewhere else. This also applies to the compFakeCoadd.py script in the next
section.

[4] Visually exam the fake objects on single CCD image (optional)

OLD_RERUN : Rerun for the original data
NEW_RERUN : Rerun for data that have fake galaxies on them
VISIT , CCD : DataID for the CCD to check

Note that not all CCDs of a Visit should have fakes on them. For a Visit, it is possible that only a few CCDs that really
contribute to the Tract. So, it is normal that you find no fake for certain CCD. This tool is meant to be a simple
visualization.

[NOT AVAILABLE NOW]
It is also possible to directly add fake galaxies to the coadd images.
.....

NOTE: For hscPipe newer than version 3.9.0, by default, the stack.py will turn off all measurements, but only do
warping and coadding. All the photometric measurements will be done by the multiBand.py process. Be careful
with this, it means that you do not need to turn off cModel in the configuration file; and you can nolonger check the single
band photometry results for coadd images.
Since NO measurement will be done, there is no need to retarget the detection task to objects around fake objects. Now,
an empty configuration file is fine; And, no output catalog will be saved, so the doOverwriteOutput config is
nolonger available.

[Before hscPipe 3.9.0] Now we need to run stack.py to generate the coadd images in each band. We also
need a configure file to overwrite some default parameters of stack.py :

Since we only care about the fake objects, we can use detectOnlyFakes.py to only measure the objects close
to fake footprint:

import fakes.detectOnlyFakes
root.processCoadd.detectCoaddSources.detection.retarget(fakes.detectOnlyFakes.OnlyFakesDete
ctionTask)

[4] Add fake galaxies to Coadd Images by running runAddFakesCoadd.py

(d). Generating coadd images in each band

[1] Prepare the configuration file:

[Before hscPipe 3.9.0] Since the pipeline is using the multiband.py now. We don't really care about the
photometric measurements in each band. So, we can turn-off the the most time-consuming cModel photometry by
replacing it with Gaussian photometry:

root.processCoadd.calibrate.measurement.algorithms.names=['flux.psf', 'flags.pixel', 'flux.gaus
sian', 'flux.aperture', 'flux.naive', 'centroid.naive', 'flux.sinc', 'shape.sdss', 'shape.hsm.m
oments', 'multishapelet.psf', 'correctfluxes', 'classification.extendedness', 'skycoord', 'shap
e.hsm.psfMoments']

root.processCoadd.measurement.algorithms.names=['flux.psf', 'flags.pixel', 'shape.hsm.moments',
 'flux.aperture', 'flux.naive', 'focalplane', 'flux.gaussian', 'centroid.naive', 'flux.sinc', '
shape.sdss', 'jacobian', 'shape.hsm.regauss', 'flux.kron', 'correctfluxes', 'classification.ext
endedness', 'skycoord', 'shape.hsm.psfMoments']

root.processCoadd.calibrate.measurement.slots.modelFlux='flux.gaussian'
root.processCoadd.measurement.slots.modelFlux='flux.gaussian'

[Before hscPipe 3.9.0] Save the above content in a config file, e.g. stack_i.config , we can use
stack.py to generate the coadd images; Example of command for stack.py is like:

stack.py /lustre/Subaru/SSP/ --rerun=song/fake/multi_test1 \
 --id tract=8524 filter=HSC-I patch='4,4' \
 --selectId visit=7394^7402^14144^14164^14166^14178 \
 --queue small --nodes 6 --procs 12 --job stack_i_1 \
 --clobber-config -C stack_i.config \
 --config doOverwriteOutput=True doOverwriteCoadd=True \
 makeCoaddTempExp.doOverwrite=True

[For hscPipe 3.9.0] One can just create an empty configuration file; And remove the
doOverwriteOutput=True part of the command:

stack.py /lustre/Subaru/SSP/ --rerun=song/fake/multi_test1 \
 --id tract=8524 filter=HSC-I patch='4,4' \
 --selectId visit=7394^7402^14144^14164^14166^14178 \
 --queue small --nodes 6 --procs 12 --job stack_i_1 \
 --clobber-config -C stack_i.config \
 --config doOverwriteCoadd=True makeCoaddTempExp.doOverwrite=True

In the above example, we will only generate coadd for one Patch ; Without the patch=XXX , the process will
generate all Patches for this Tract.
--selectId indicates the specific Visits you want to use for this coadd.

The last three options are needed if you added the fake sources to already processed data, otherwise the pipeline will
skip making the coadd and use the coadd without any fake sources.

After the process, you should check the job output file to ensure that nothing werid happens. And, you should be able to
find the coadd image in your rerun: e.g. for above run, it should be:
..../song/fake/multi_test1/deepCoadd/HSC-I/8524/4,4.fits .

[Before hscPipe 3.9.0] You can use the showInDs9.py script in the test folder of the fakePipe to visualize
the FAKE mask plane on the coadd image. The basic usage is:

python showInDs9 NEW_RERUN TRACT PATCH --filter FILTER

NEW_RERUN : Rerun for data that have fake galaxies on them
TRACT , PATCH , FILTER : DataID for the Patch to check; Note that a filter must be supplied by the user, or the

[2] Run stack.py to generate coadd images:

[3] Check the coadd images (optional):

script will try to interpret the TRACT , PATCH as VISIT , CCD for single visit exposure.
This will open up a DS9 window, and display the coadd image with information from the mask plane. The Blue pixels
belong to detected objects; Green regions are bad data (interpolated pixels); Red squares are the regions used for the
fake objects (the FAKE mask plane); any object (both real and fake one) whose fake pipeline overlaps the FAKE

mask plane will be included in the measurement process (highlighted by tiny red circles; Noticed that some of the red
circles can be well outside the FAKE plane, they are included because their footprints still touch one of the FAKE

mask region (due to large size or problematic deblending process).

You can also use the simple script, compFakeCoadd.py , in the test folder to compare the coadd image before
and after the fakes are added. The usage is very simiar to the compFakeGalaxy.py for single exposure:

python compFakeCoadd.py OLD_RERUN NEW_RERUN TRACT PATCH FILTER

For example:

python compFakeCoadd.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 8524 '4,4' 'HSC-I'

Will generate a 3-column figure that shows the original coadd, the coadd with fakes on it, and their differences.
Notice that if you did NOT select all the Visits that go into this Patch, most of the differences are actually caused by the
difference of the image depth.

If your tests only reguire the coadd results in single band. You have finished the parts that require running the pipeline,
and can jump to step (f) to match the results.

Now the HSC pipeline has switched to the multi-band processing as the default method. For the multi-band process,
please see the following links for more details:

http://hsca.ipmu.jp/hscsphinx/pipeline/multiband.html
http://hscsurvey.pbworks.com/w/page/87953929/Coadd%20Multi-Band%20Processing

As usual, a configuration file is necessary for this process. The file should contain the following information:

root.measureCoaddSources.propagateFlags.flags={}
root.clobberMergedDetections = True
root.clobberMeasurements = True
root.clobberMergedMeasurements = True
root.clobberForcedPhotometry = True

And, we can also only do measurements for objects that are close to our fake footprints. This involves the
mergeOnlyFakes.py function, which is still UNDER CONSTRCUTION [!!]. This should be done by including

following lines into the configuration file:

import fakes.mergeOnlyFakes
#root.measureCoaddSources.retarget(fakes.mergeOnlyFakes.OnlyFakesMergeTask)
NOT AVAILABLE YET

Once the configuration file, e.g. multiband.config , is prepared, we can start run multiBand.py . The basic
usage is something like:

(e). Multiband processing

[1] Prepare the configuration file:

[2] Running multiBand.py for multiband processing:

http://hsca.ipmu.jp/hscsphinx/pipeline/multiband.html
http://hscsurvey.pbworks.com/w/page/87953929/Coadd%20Multi-Band%20Processing

multiBand.py /lustre/Subaru/SSP --rerun=song/fake/multi_test1 \
 --id tract=8524 filter=HSC-I^HSC-R patch='4,4' \
 --queue small --nodes 1 --procs 2 --job multiband_test1 \
 --clobber-config -C multiband.config \
 --mpiexec='-bind-to socket' --time 2000

The basic idea is very similar to the stack.py , so we just show this example without giving further explanation.
Also, without giving specific patch=xxx , multiBand.py will work on the entire Tract

After the job is finished, you should check the job summary to make sure nothing weird happened. And, you should be
able to find multiband outputs in the/multi_test1/deepCoadd-results folder. The above example applies
to two filters, so you should find three folders here: HSC-R , HSC-I , and merged . In the folder for each filter, you
should find files like: det-HSC-I-8524-4,4.fits , meas-HSC-I-8524-4,4.fits ,
srcMatch-HSC-I-8524-4,4.fits , and forced_src-HSC-I-8524-4,4.fits . And, in the merged folder,

you should find mergeDet-8524-4,4.fits , ref-8524-4,4.fits under 8524/4,4/ .

By now, you have finished all the parts that involves using HSC pipeline, and can proceed to check the results. One can
easily use the pipeline tool to load in the catalogs, and do their own match with the input catalog. The fakePipe

provides a naive code to match the results with the input too.

By using the runMatchFakes.py command, one can provide basic matching with the input catalog using the (RA,
DEC) information at both single exposure and coadd image level. The basic usage is:

runMatchFakes.py RERUN_DIR VISIT_OR_TRACT --ccd CCD_OR_PATCH \
 -f FILTER -o OUTPUT_FITS -c INPUT_FAKES -w -m -t TOLERANCE

RERUN_DIR : Location of the rerun that contains the fakePipe test
VISIT_OR_TRACT , CCD_OR_PATCH , FILTER : Controls the data to be matched. When no FILTER is provided,

the code treats the dataId as VISIT , CCD ; And, when FILTER is provided, it considers the dataId to be TRACT ,
PATCH ; Multiple CCDs and PATCHes can be provided too. But, each time, only one filter can be provided (For

now, you have to run match on multiband results separately, and deal the results manually).
OUTPUT_FITS : Name of the output FITS catalog
INPUT_FAKES : The input catalog of fake galaxies. If not present, the code will try to use the information stored in the

metadata (e.g. FAKEXXX X Y), instead of the (RA, Dec) information in the catalog. This only works for the single
exposure images, and will fail for coadd products.
-w : Whether over-write the output, default is False

-m : Whether match with the multiband output (deepCoadd_meas), instead of the single band catalog from
stack.py (deepCoadd_src). For multiband results, there are other useful catalogs (e.g. deepCoadd_ref ,
deepCoadd_forced_src). To use them, one has to change the matchFakes.py [TODO]
-t TOLERANCE : The matching radius in PIXELS. Default value is 1.0.

Example usage of runMatchFakes.py for the above multiBand.py example is:

runMatchFakes.py /lustre/Subaru/SSP/rerun/song/fake/multi_test1 8524 \
 --ccd '4,4' -f HSC-R -c src_8524_radec_R.fits \
 -o src_8254_R_multiband_test1 \
 -w -t 1.5 -m

This generate a FITS catalog named: src_8254_I_multiband_test1.fits

The matched catalog contains all the information from the pipeline output catalog, and the information from the input
catalog. In the meanwhile, the code also put some extra information in the matched catalog:

coord_ra , coord_dec that can be used to compare with the input RA , Dec of fake objects.
fakeId , fakeOffset : ID of the fake galaxy, and the pixel separation between its match from the pipeline.

[TODO: Right now, there is a bug in the runMatchFakes.py due to the repeat fakeId in the catalog -- the same

(f). Match input fake galaxies with output catalogs

fake model can be assigned to different coordinates]
zeropoint , pixelScale : Photometric zeropoint (Now it should always be 27.0); and the pixel scale that

convert pixel into arcsec.
Convert all flux and flux error into magnitude and magnitude error, e.g.: cmodel.mag , cmodel.mag.err ,
mag.kron , mag.kron.err .

Not all items in the catalog are useful, you can filter the catalog by:

id > 0 should easily remove all the unmatched objects.
deblend.nchild == 0 && parent == 0 can be used to select "isolated" objects to test basic photometry.

Example: Red dot: Input fake objects on Tract=8524 and Patch='4,4' in HSC-I band from the above
example, using RA , Dec in the catalog; Blue circle: Matched objects from the pipeline, using coord_ra ,
coord_dec .

Noticed that some input fake galaxies are without any match. This could due to low S/N of faint fake galaxy; or
deblending process; or other complications.

Example: You can already start using the results for some basic test. e.g. Input magnitude mag_i versus the
magnitude difference between the pipeline output cModel magnitude and the input (cmode.mag - mag_i), color-
coded by the input Sersic index of the fake model (sersic_n ; Blue--Red: Low--High)

This was designed to test the completeness of the point source detection in HSC pipeline. Each time, certain numbers of
the stars with the same magnitude will be added to the single exposure images using the PSF esimated by the HSC
pipeline.

The only difference with the above example of fake galaxy test is, during the runAddFakes.py step, you need a
different configuration file, e.g:

import fakes.randomStarFakes as randomStarFakes
root.fakes.retarget(randomStarFakes.RandomStarFakeSourcesTask)
root.fakes.nStars = 100
root.fakes.magnitude = 22

nStars : The number of the stars you want to put on a single CCD
magnitude : The magnitude of these stars

After saving this into a configuration file, e.g. random_star_test.config , you can add fake stars by running
something like:

runAddFakes.py /lustre/Subaru/SSP/ \
 --rerun yasuda/SSP3.8.5_20150725:song/fake/rstar_test \
 --id visit=7288\
 --clobber-config -C random_star_test.config \
 --queue small --job addRandomStar_i_1 --nodes 1 --procs 1

After this step, the rest should be very similar to the fake galaxy test.

This is very similar to the positionGalSimFakes.py procedure except the input catalog only contains four columns:
ID , RA , Dec , mag . One can use the makeSourceList.py

If you want to add check that the fake source adding is working without going through all the measurements, use
debugFakes , which takes a calibrated exposure from a completed rerun (rerun1) and writes the exposure with fakes

added to rerun2.

2. Single Band Fake Star Tests

[1] Random stars with the same magnitude: randomStarFakes.py

[2] Stars from input magnitude: positionStarFakes.py

Debugging:

debugFakes.py /to/data/ --rerun=rerun1:rerun2 --id visit=XXX ccd=YY -C config_debug

Note that this will fail if rerun1 doesn't have the visit/ccd you are trying to process already in it. This code doesn't do any
measurements, it simply adds the fake sources to the image, which you can then open in DS9.

Using hscPipe 3.9.0

The results can be found at : /lustre/Subaru/SSP/rerun/song/fake/multi_test1

This 2-filter, 4-visit, 1-patch test results in 103 GB of extra data.

Input: cosmos_23.5_multiband.fits

rejMask: ssp385_wide_8524_HSC-I_nodata_big.wkb

Only add to innerTract, and rename the ID column
Outputs: src_8524_radec_G/R/I/Z/Y.fits

makeSourceList.py /lustre/Subaru/SSP \
 --rerun=yasuda/SSP3.8.5_20150725 \
 --id tract=8524 filter='HSC-I' patch='4,4' \
 -c inputCat='cosmos_23.5_multiband.fits' \
 rejMask='ssp385_wide_8524_HSC-I_nodata_big.wkb' \
 rhoFakes=300 innerTract=True uniqueID=True

I-band:
Output: 12 visits: 7288^7310^7350^7352^7364^7378^7394^7402^14144^14164^14166^14178

tractFindVisits.py 'yasuda/SSP3.8.5_20150725' 8524 \
 --patch='4,4' --filter='HSC-I'

R-band:
Output: 6 visits: 11426^11462^11496^11498^11522^11524

tractFindVisits.py 'yasuda/SSP3.8.5_20150725' 8524 \
 --patch='4,4' --filter='HSC-R'

Check the skyMap, select the 4 Visits that overlap with Patch='4,4' a lot:

showTractVisit.py /lustre/Subaru/SSP/rerun/yasuda/SSP3.8.5_20150725 8524 \
 7288^7350^7364^7378 -p

showTractVisit.py /lustre/Subaru/SSP/rerun/yasuda/SSP3.8.5_20150725 8524 \
 11426^11462^11496^11524 -p

I-band: in folder addfake_i

addfake_i.confg

Log of Example

Make Sources

Select Visits

Add Fakes

from fakes import positionGalSimFakes
root.fakes.retarget(positionGalSimFakes.PositionGalSimFakesTask)
root.fakes.galList = src_8524_radec_I.fits
root.fakes.galType = 'sersic'
root.fakes.maxMargin = 150
root.fakes.addShear = False

runAddFakes.py /lustre/Subaru/SSP/ \
 --rerun yasuda/SSP3.8.5_20150725:song/fake/multi_test1 \
 --id visit=7288^7350^7364^7378 \
 --clobber-config -C addfake_i.config \
 --queue small --job addfake_i_1 --nodes 4 --procs 8

I-band: in folder addfake_i

addfake_r.confg

from fakes import positionGalSimFakes
root.fakes.retarget(positionGalSimFakes.PositionGalSimFakesTask)
root.fakes.galList = src_8524_radec_R.fits
root.fakes.galType = 'sersic'
root.fakes.maxMargin = 150
root.fakes.addShear = False

runAddFakes.py /lustre/Subaru/SSP/ \
 --rerun yasuda/SSP3.8.5_20150725:song/fake/multi_test1 \
 --id visit=11426^11462^11496^11524 \
 --clobber-config -C addfake_r.config \
 --queue small --job addfake_r_1 --nodes 4 --procs 8

Visually exam the fakes:

python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 7288 40
python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 7350 50
python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 7364 60
python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 7378 40

python compFakeGalaxy.py yasuda/SSP3.8.5_20150725 song/fake/multi_test1 11426 40

I-band: in folder stack_i :

stack_i.config (empty)

import fakes.detectOnlyFakes

stack.py /lustre/Subaru/SSP/ --rerun=song/fake/multi_test1 --id tract=8524 filter=HSC-I patch='
4,4' --selectId visit=7288^7350^7364^7378 --queue small --nodes 4 --procs 8 --job stack_i --clo
bber-config --config doOverwriteCoadd=True makeCoaddTempExp.doOverwrite=True

R-band: in folder stack_r

stack_r.config (empty)

Stack Images

import fakes.detectOnlyFakes

stack.py /lustre/Subaru/SSP/ --rerun=song/fake/multi_test1 --id tract=8524 filter=HSC-R patch='
4,4' --selectId visit=11426^11462^11496^11524 --queue small --nodes 4 --procs 8 --job stack_r_1
 --clobber-config --config doOverwriteCoadd=True makeCoaddTempExp.doOverwrite=True

Visually check the result

multiband.config

root.measureCoaddSources.propagateFlags.flags={}
root.clobberMergedDetections = True
root.clobberMeasurements = True
root.clobberMergedMeasurements = True
root.clobberForcedPhotometry = True

multiBand.py /lustre/Subaru/SSP --rerun=song/fake/multi_test1 \
 --id tract=8524 filter=HSC-I^HSC-R patch='4,4' \
 --queue small --nodes 1 --procs 2 --job multiband_test1 \
 --clobber-config -C multiband.config \
 --mpiexec='-bind-to socket' --time 2000

runMatchFakes.py /lustre/Subaru/SSP/rerun/song/fake/multi_test1 8524 \
 --ccd '4,4' -f HSC-R -c src_8524_radec_R.fits \
 -o src_8254_R_multiband_test1 \
 -w -t 1.5 -m

runMatchFakes.py /lustre/Subaru/SSP/rerun/song/fake/multi_test1 8524 \
 --ccd '4,4' -f HSC-I -c src_8524_radec_I.fits \
 -o src_8254_I_multiband_test1 \
 -w -t 1.5 -m

In folder addstar_i :

addstar_i.config

import fakes.positionStarFakes as positionStarFakes
root.fakes.retarget(positionStarFakes.PositionStarFakesTask)
root.fakes.starList = 'star_8524_radec_I.fits'

runAddFakes.py /lustre/Subaru/SSP/ \
 --rerun yasuda/SSP3.8.5_20150725:song/fake/position_star \
 --id visit=7288^7350^7364^7378 \
 --clobber-config -C addstar_i.config \
 --queue small --job addstar_i --nodes 4 --procs 8

Multiband Processing

Match with Input

Position Star tests

