Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

from builtins import zip 

import matplotlib 

matplotlib.use("Agg") 

import numpy as np 

import numpy.lib.recfunctions as rfn 

import numpy.ma as ma 

import unittest 

import healpy as hp 

from lsst.sims.maf.slicers.healpixSlicer import HealpixSlicer 

import lsst.utils.tests 

 

 

def makeDataValues(size=100, minval=0., maxval=1., ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=np.pi, random=1172): 

"""Generate a simple array of numbers, evenly arranged between min/max, 

in 1 dimensions (optionally sorted), together with RA/Dec values 

for each data value.""" 

data = [] 

# Generate data values min - max. 

datavalues = np.arange(0, size, dtype='float') 

datavalues *= (float(maxval) - float(minval)) / (datavalues.max() - datavalues.min()) 

datavalues += minval 

rng = np.random.RandomState(random) 

randorder = rng.rand(size) 

randind = np.argsort(randorder) 

datavalues = datavalues[randind] 

datavalues = np.array(list(zip(datavalues)), dtype=[('testdata', 'float')]) 

data.append(datavalues) 

# Generate RA/Dec values equally spaces on sphere between ramin/max, decmin/max. 

ra = np.arange(0, size, dtype='float') 

ra *= (float(ramax) - float(ramin)) / (ra.max() - ra.min()) 

randorder = rng.rand(size) 

randind = np.argsort(randorder) 

ra = ra[randind] 

ra = np.array(list(zip(ra)), dtype=[('ra', 'float')]) 

data.append(ra) 

v = np.arange(0, size, dtype='float') 

v *= ((np.cos(decmax+np.pi) + 1.)/2.0 - (np.cos(decmin+np.pi)+1.)/2.0) / (v.max() - v.min()) 

v += (np.cos(decmin+np.pi)+1.)/2.0 

dec = np.arccos(2*v-1) - np.pi 

randorder = rng.rand(size) 

randind = np.argsort(randorder) 

dec = dec[randind] 

dec = np.array(list(zip(dec)), dtype=[('dec', 'float')]) 

data.append(dec) 

# Add in rotation angle 

rot = rng.rand(len(dec))*2*np.pi 

data.append(np.array(rot, dtype=[('rotSkyPos', 'float')])) 

mjd = np.arange(len(dec))*.1 

data.append(np.array(mjd, dtype=[('observationStartMJD', 'float')])) 

data = rfn.merge_arrays(data, flatten=True, usemask=False) 

return data 

 

 

def calcDist_vincenty(RA1, Dec1, RA2, Dec2): 

"""Calculates distance on a sphere using the Vincenty formula. 

Give this function RA/Dec values in radians. Returns angular distance(s), in radians. 

Note that since this is all numpy, you could input arrays of RA/Decs.""" 

D1 = (np.cos(Dec2)*np.sin(RA2-RA1))**2 + \ 

(np.cos(Dec1)*np.sin(Dec2) - 

np.sin(Dec1)*np.cos(Dec2)*np.cos(RA2-RA1))**2 

D1 = np.sqrt(D1) 

D2 = (np.sin(Dec1)*np.sin(Dec2) + 

np.cos(Dec1)*np.cos(Dec2)*np.cos(RA2-RA1)) 

D = np.arctan2(D1, D2) 

return D 

 

 

class TestHealpixSlicerSetup(unittest.TestCase): 

 

def testSlicertype(self): 

"""Test instantiation of slicer sets slicer type as expected.""" 

testslicer = HealpixSlicer(nside=16, verbose=False) 

self.assertEqual(testslicer.slicerName, testslicer.__class__.__name__) 

self.assertEqual(testslicer.slicerName, 'HealpixSlicer') 

 

def testNsidesNbins(self): 

"""Test that number of sides passed to slicer produces expected number of bins.""" 

nsides = [1, 2, 4, 8, 16, 32, 64, 128, 256, 512] 

npixx = [12, 48, 192, 768, 3072, 12288, 49152, 196608, 786432, 3145728] 

for nside, npix in zip(nsides, npixx): 

testslicer = HealpixSlicer(nside=nside, verbose=False) 

self.assertEqual(testslicer.nslice, npix) 

 

def testNsidesError(self): 

"""Test that if passed an incorrect value for nsides that get expected exception.""" 

self.assertRaises(ValueError, HealpixSlicer, nside=3) 

 

 

class TestHealpixSlicerEqual(unittest.TestCase): 

 

def setUp(self): 

self.nside = 16 

self.testslicer = HealpixSlicer(nside=self.nside, verbose=False, lonCol='ra', latCol='dec') 

nvalues = 10000 

self.dv = makeDataValues(size=nvalues, minval=0., maxval=1., 

ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=0, 

random=22) 

self.testslicer.setupSlicer(self.dv) 

 

def tearDown(self): 

del self.testslicer 

del self.dv 

self.testslicer = None 

 

def testSlicerEquivalence(self): 

"""Test that slicers are marked equal when appropriate, and unequal when appropriate.""" 

# Note that they are judged equal based on nsides (not on data in ra/dec spatial tree). 

testslicer2 = HealpixSlicer(nside=self.nside, verbose=False, lonCol='ra', latCol='dec') 

self.assertEqual(self.testslicer, testslicer2) 

assert((self.testslicer != testslicer2) is False) 

testslicer2 = HealpixSlicer(nside=self.nside/2.0, verbose=False, lonCol='ra', latCol='dec') 

self.assertNotEqual(self.testslicer, testslicer2) 

assert((self.testslicer != testslicer2) is True) 

 

 

class TestHealpixSlicerIteration(unittest.TestCase): 

 

def setUp(self): 

self.nside = 8 

self.testslicer = HealpixSlicer(nside=self.nside, verbose=False, lonCol='ra', latCol='dec') 

nvalues = 10000 

self.dv = makeDataValues(size=nvalues, minval=0., maxval=1., 

ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=0, 

random=33) 

self.testslicer.setupSlicer(self.dv) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testIteration(self): 

"""Test iteration goes through expected range and ra/dec are in expected range (radians).""" 

npix = hp.nside2npix(self.nside) 

for i, s in enumerate(self.testslicer): 

self.assertEqual(i, s['slicePoint']['sid']) 

ra = s['slicePoint']['ra'] 

dec = s['slicePoint']['dec'] 

self.assertGreaterEqual(ra, 0) 

self.assertLessEqual(ra, 2*np.pi) 

self.assertGreaterEqual(dec, -np.pi) 

self.assertLessEqual(dec, np.pi) 

# npix would count starting at 1, while i counts starting at 0 .. 

# so add one to check end point 

self.assertEqual(i+1, npix) 

 

def testGetItem(self): 

"""Test getting indexed value.""" 

for i, s in enumerate(self.testslicer): 

np.testing.assert_equal(self.testslicer[i], s) 

 

 

class TestHealpixSlicerSlicing(unittest.TestCase): 

# Note that this is really testing baseSpatialSlicer, as slicing is done there for healpix grid 

 

def setUp(self): 

self.nside = 8 

self.radius = 1.8 

self.testslicer = HealpixSlicer(nside=self.nside, verbose=False, 

lonCol='ra', latCol='dec', latLonDeg=False, 

radius=self.radius) 

nvalues = 10000 

self.dv = makeDataValues(size=nvalues, minval=0., maxval=1., 

ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=0, 

random=44) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testSlicing(self): 

"""Test slicing returns (all) data points which are within 'radius' of bin point.""" 

# Test that slicing fails before setupSlicer 

self.assertRaises(NotImplementedError, self.testslicer._sliceSimData, 0) 

# Set up and test actual slicing. 

self.testslicer.setupSlicer(self.dv) 

for s in self.testslicer: 

ra = s['slicePoint']['ra'] 

dec = s['slicePoint']['dec'] 

distances = calcDist_vincenty(ra, dec, self.dv['ra'], self.dv['dec']) 

didxs = np.where(distances <= np.radians(self.radius)) 

sidxs = s['idxs'] 

self.assertEqual(len(sidxs), len(didxs[0])) 

if len(sidxs) > 0: 

didxs = np.sort(didxs[0]) 

sidxs = np.sort(sidxs) 

np.testing.assert_equal(self.dv['testdata'][didxs], self.dv['testdata'][sidxs]) 

 

 

class TestHealpixChipGap(unittest.TestCase): 

# Note that this is really testing baseSpatialSlicer, as slicing is done there for healpix grid 

 

def setUp(self): 

self.nside = 8 

self.radius = 2.041 

self.testslicer = HealpixSlicer(nside=self.nside, verbose=False, 

lonCol='ra', latCol='dec', latLonDeg=False, 

radius=self.radius, useCamera=True, 

chipNames=['R:1,1 S:1,1']) 

nvalues = 1000 

self.dv = makeDataValues(size=nvalues, minval=0., maxval=1., 

ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=0, 

random=55) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

def testSlicing(self): 

"""Test slicing returns (most) data points which are within 'radius' of bin point.""" 

# Test that slicing fails before setupSlicer 

self.assertRaises(NotImplementedError, self.testslicer._sliceSimData, 0) 

# Set up and test actual slicing. 

self.testslicer.setupSlicer(self.dv) 

for s in self.testslicer: 

ra = s['slicePoint']['ra'] 

dec = s['slicePoint']['dec'] 

distances = calcDist_vincenty(ra, dec, self.dv['ra'], self.dv['dec']) 

didxs = np.where(distances <= np.radians(self.radius)) 

sidxs = s['idxs'] 

self.assertLessEqual(len(sidxs), len(didxs[0])) 

if len(sidxs) > 0: 

for indx in sidxs: 

self.assertIn(self.dv['testdata'][indx], self.dv['testdata'][didxs]) 

 

 

class TestHealpixSlicerPlotting(unittest.TestCase): 

 

def setUp(self): 

rng = np.random.RandomState(713244122) 

self.nside = 16 

self.radius = 1.8 

self.testslicer = HealpixSlicer(nside=self.nside, verbose=False, latLonDeg=False, 

lonCol='ra', latCol='dec', radius=self.radius) 

nvalues = 10000 

self.dv = makeDataValues(size=nvalues, minval=0., maxval=1., 

ramin=0, ramax=2*np.pi, 

decmin=-np.pi, decmax=0, 

random=66) 

self.testslicer.setupSlicer(self.dv) 

self.metricdata = ma.MaskedArray(data=np.zeros(len(self.testslicer), dtype='float'), 

mask=np.zeros(len(self.testslicer), 'bool'), 

fill_value=self.testslicer.badval) 

for i, b in enumerate(self.testslicer): 

idxs = b['idxs'] 

if len(idxs) > 0: 

self.metricdata.data[i] = np.mean(self.dv['testdata'][idxs]) 

else: 

self.metricdata.mask[i] = True 

self.metricdata2 = ma.MaskedArray(data=rng.rand(len(self.testslicer)), 

mask=np.zeros(len(self.testslicer), 'bool'), 

fill_value=self.testslicer.badval) 

 

def tearDown(self): 

del self.testslicer 

self.testslicer = None 

 

 

class TestMemory(lsst.utils.tests.MemoryTestCase): 

pass 

 

 

def setup_module(module): 

lsst.utils.tests.init() 

 

 

271 ↛ 272line 271 didn't jump to line 272, because the condition on line 271 was never trueif __name__ == "__main__": 

lsst.utils.tests.init() 

unittest.main()