Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

import numpy as np 

from lsst.sims.featureScheduler.utils import (empty_observation, set_default_nside) 

import healpy as hp 

from lsst.sims.featureScheduler.surveys import BaseMarkovDF_survey 

from lsst.sims.featureScheduler.utils import (int_binned_stat, 

gnomonic_project_toxy, tsp_convex) 

import copy 

from lsst.sims.utils import _angularSeparation, _hpid2RaDec, _approx_RaDec2AltAz 

 

__all__ = ['Greedy_survey', 'Blob_survey'] 

 

 

class Greedy_survey(BaseMarkovDF_survey): 

""" 

Select pointings in a greedy way using a Markov Decision Process. 

""" 

def __init__(self, basis_functions, basis_weights, filtername='r', 

block_size=1, smoothing_kernel=None, nside=None, 

dither=True, seed=42, ignore_obs='ack', survey_name='', 

nexp=2, exptime=30.): 

 

extra_features = {} 

 

super(Greedy_survey, self).__init__(basis_functions=basis_functions, 

basis_weights=basis_weights, 

extra_features=extra_features, 

smoothing_kernel=smoothing_kernel, 

ignore_obs=ignore_obs, 

nside=nside, 

survey_name=survey_name, dither=dither) 

self.filtername = filtername 

self.block_size = block_size 

self.nexp = nexp 

self.exptime = exptime 

 

def genrate_observations(self, conditions): 

""" 

Just point at the highest reward healpix 

""" 

self.reward = self.calc_reward_function(conditions) 

 

# Check if we need to spin the tesselation 

if self.dither & (conditions.night != self.night): 

self._spin_fields() 

self.night = conditions.night.copy() 

 

# Let's find the best N from the fields 

order = np.argsort(self.reward)[::-1] 

# Crop off any NaNs 

order = order[~np.isnan(self.reward[order])] 

 

iter = 0 

while True: 

best_hp = order[iter*self.block_size:(iter+1)*self.block_size] 

best_fields = np.unique(self.hp2fields[best_hp]) 

observations = [] 

for field in best_fields: 

obs = empty_observation() 

obs['RA'] = self.fields['RA'][field] 

obs['dec'] = self.fields['dec'][field] 

obs['rotSkyPos'] = 0. 

obs['filter'] = self.filtername 

obs['nexp'] = self.nexp 

obs['exptime'] = self.exptime 

obs['field_id'] = -1 

obs['note'] = self.survey_name 

 

observations.append(obs) 

break 

iter += 1 

if len(observations) > 0 or (iter+2)*self.block_size > len(order): 

break 

 

return observations 

 

 

class Blob_survey(Greedy_survey): 

"""Select observations in large, mostly contiguous, blobs. 

 

Parameters 

---------- 

filtername1 : str ('r') 

The filter to observe in. 

filtername2 : str ('g') 

The filter to pair with the first observation. If set to None, no pair 

will be observed. 

slew_approx : float (7.5) 

The approximate slewtime between neerby fields (seconds). Used to calculate 

how many observations can be taken in the desired time block. 

filter_change_approx : float (140.) 

The approximate time it takes to change filters (seconds). 

ideal_pair_time : float (22.) 

The ideal time gap wanted between observations to the same pointing (minutes) 

min_pair_time : float (15.) 

The minimum acceptable pair time (minutes) 

search_radius : float (30.) 

The radius around the reward peak to look for additional potential pointings (degrees) 

alt_max : float (85.) 

The maximum altitude to include (degrees). 

az_range : float (90.) 

The range of azimuths to consider around the peak reward value (degrees). 

flush_time : float (30.) 

The time past the final expected exposure to flush the queue. Keeps observations 

from lingering past when they should be executed. (minutes) 

""" 

def __init__(self, basis_functions, basis_weights, 

filtername1='r', filtername2='g', 

slew_approx=7.5, filter_change_approx=140., 

read_approx=2., exptime=30., nexp=2, 

ideal_pair_time=22., min_pair_time=15., 

search_radius=30., alt_max=85., az_range=90., 

flush_time=30., 

smoothing_kernel=None, nside=None, 

dither=True, seed=42, ignore_obs='ack', 

survey_note='blob'): 

 

if nside is None: 

nside = set_default_nside() 

 

super(Blob_survey, self).__init__(basis_functions=basis_functions, 

basis_weights=basis_weights, 

filtername=None, 

block_size=0, smoothing_kernel=smoothing_kernel, 

dither=dither, seed=seed, ignore_obs=ignore_obs, 

nside=nside) 

self.flush_time = flush_time/60./24. # convert to days 

self.nexp = nexp 

self.exptime = exptime 

self.slew_approx = slew_approx 

self.read_approx = read_approx 

self.hpids = np.arange(hp.nside2npix(self.nside)) 

# If we are taking pairs in same filter, no need to add filter change time. 

if filtername1 == filtername2: 

filter_change_approx = 0 

# Compute the minimum time needed to observe a blob (or observe, then repeat.) 

if filtername2 is not None: 

self.time_needed = (min_pair_time*60.*2. + exptime + read_approx + filter_change_approx)/24./3600. # Days 

else: 

self.time_needed = (min_pair_time*60. + exptime + read_approx)/24./3600. # Days 

self.filter_set = set(filtername1) 

if filtername2 is None: 

self.filter2_set = self.filter_set 

else: 

self.filter2_set = set(filtername2) 

 

self.ra, self.dec = _hpid2RaDec(self.nside, self.hpids) 

 

self.survey_note = survey_note 

self.counter = 1 # start at 1, because 0 is default in empty observation 

self.filtername1 = filtername1 

self.filtername2 = filtername2 

self.search_radius = np.radians(search_radius) 

self.az_range = np.radians(az_range) 

self.alt_max = np.radians(alt_max) 

self.min_pair_time = min_pair_time 

self.ideal_pair_time = ideal_pair_time 

 

# If we are only using one filter, this could be useful 

if (self.filtername2 is None) | (self.filtername1 == self.filtername2): 

self.filtername = self.filtername1 

 

def _set_block_size(self, conditions): 

""" 

Update the block size if it's getting near the end of the night. 

""" 

 

available_time = conditions.sun_n18_rising - conditions.mjd 

available_time *= 24.*60. # to minutes 

 

n_ideal_blocks = available_time / self.ideal_pair_time 

if n_ideal_blocks >= 3: 

self.nvisit_block = int(np.floor(self.ideal_pair_time*60. / (self.slew_approx + self.exptime + 

self.read_approx*(self.nexp - 1)))) 

else: 

# Now we can stretch or contract the block size to allocate the remainder time until twilight starts 

# We can take the remaining time and try to do 1,2, or 3 blocks. 

possible_times = available_time / np.arange(1, 4) 

diff = np.abs(self.ideal_pair_time-possible_times) 

best_block_time = np.max(possible_times[np.where(diff == np.min(diff))]) 

self.nvisit_block = int(np.floor(best_block_time*60. / (self.slew_approx + self.exptime + 

self.read_approx*(self.nexp - 1)))) 

 

def calc_reward_function(self, conditions): 

""" 

""" 

# Set the number of observations we are going to try and take 

self._set_block_size(conditions) 

# Computing reward like usual with basis functions and weights 

if self._check_feasibility(conditions): 

self.reward = 0 

indx = np.arange(hp.nside2npix(self.nside)) 

for bf, weight in zip(self.basis_functions, self.basis_weights): 

basis_value = bf(conditions, indx=indx) 

self.reward += basis_value*weight 

# might be faster to pull this out into the feasabiliity check? 

 

if self.smoothing_kernel is not None: 

self.smooth_reward() 

 

# Apply max altitude cut 

too_high = np.where(conditions.alt > self.alt_max) 

self.reward[too_high] = np.nan 

 

# Select healpixels within some radius of the max 

# This is probably faster with a kd-tree. 

 

max_hp = np.where(self.reward == np.nanmax(self.reward))[0] 

if np.size(max_hp) > 0: 

peak_reward = np.min(max_hp) 

else: 

# Everything is masked, so get out 

return -np.inf 

 

# Apply radius selection 

dists = _angularSeparation(self.ra[peak_reward], self.dec[peak_reward], self.ra, self.dec) 

out_hp = np.where(dists > self.search_radius) 

self.reward[out_hp] = np.nan 

 

# Apply az cut 

az_centered = conditions.az - conditions.az[peak_reward] 

az_centered[np.where(az_centered < 0)] += 2.*np.pi 

 

az_out = np.where((az_centered > self.az_range/2.) & (az_centered < 2.*np.pi-self.az_range/2.)) 

self.reward[az_out] = np.nan 

else: 

self.reward = -np.inf 

self.reward_checked = True 

return self.reward 

 

def genrate_observations(self, conditions): 

""" 

Find a good block of observations. 

""" 

 

self.reward = self.calc_reward_function(conditions) 

 

# Check if we need to spin the tesselation 

if self.dither & (conditions.night != self.night): 

self._spin_fields() 

self.night = conditions.night.copy() 

 

# Now that we have the reward map, 

potential_hp = np.where(~np.isnan(self.reward) == True) 

ufields, reward_by_field = int_binned_stat(self.hp2fields[potential_hp], 

self.reward[potential_hp], statistic=np.max) 

# chop off any nans 

not_nans = np.where(~np.isnan(reward_by_field) == True) 

ufields = ufields[not_nans] 

reward_by_field = reward_by_field[not_nans] 

 

order = np.argsort(reward_by_field) 

ufields = ufields[order][::-1][0:self.nvisit_block] 

self.best_fields = ufields 

# Let's find the alt, az coords of the points (right now, hopefully doesn't change much in time block) 

pointing_alt, pointing_az = _approx_RaDec2AltAz(self.fields['RA'][self.best_fields], 

self.fields['dec'][self.best_fields], 

conditions.site.latitude_rad, 

conditions.site.longitude_rad, 

conditions.mjd, 

lmst=conditions.lmst) 

 

# Let's find a good spot to project the points to a plane 

mid_alt = (np.max(pointing_alt) - np.min(pointing_alt))/2. 

 

# Code snippet from MAF for computing mean of angle accounting for wrap around 

# XXX-TODO: Maybe move this to sims_utils as a generally useful snippet. 

x = np.cos(pointing_az) 

y = np.sin(pointing_az) 

meanx = np.mean(x) 

meany = np.mean(y) 

angle = np.arctan2(meany, meanx) 

radius = np.sqrt(meanx**2 + meany**2) 

mid_az = angle % (2.*np.pi) 

if radius < 0.1: 

mid_az = np.pi 

 

# Project the alt,az coordinates to a plane. Could consider scaling things to represent 

# time between points rather than angular distance. 

pointing_x, pointing_y = gnomonic_project_toxy(pointing_az, pointing_alt, mid_az, mid_alt) 

# Now I have a bunch of x,y pointings. Drop into TSP solver to get an effiencent route 

towns = np.vstack((pointing_x, pointing_y)).T 

# Leaving optimize=False for speed. The optimization step doesn't usually improve much. 

better_order = tsp_convex(towns, optimize=False) 

# XXX-TODO: Could try to roll better_order to start at the nearest/fastest slew from current position. 

observations = [] 

counter2 = 0 

approx_end_time = np.size(better_order)*(self.slew_approx + self.exptime + 

self.read_approx*(self.nexp - 1)) 

flush_time = conditions.mjd + approx_end_time/3600./24. + self.flush_time 

for indx in better_order: 

field = self.best_fields[indx] 

obs = empty_observation() 

obs['RA'] = self.fields['RA'][field] 

obs['dec'] = self.fields['dec'][field] 

obs['rotSkyPos'] = 0. 

obs['filter'] = self.filtername1 

obs['nexp'] = self.nexp 

obs['exptime'] = self.exptime 

obs['field_id'] = -1 

obs['note'] = '%s' % (self.survey_note) 

obs['block_id'] = self.counter 

obs['flush_by_mjd'] = flush_time 

# Add the mjd for debugging 

obs['mjd'] = conditions.mjd 

observations.append(obs) 

counter2 += 1 

 

# If we only want one filter block 

if self.filtername2 is None: 

result = observations 

else: 

# Double the list to get a pair. 

observations_paired = [] 

for observation in observations: 

obs = copy.copy(observation) 

obs['filter'] = self.filtername2 

observations_paired.append(obs) 

 

# Check loaded filter here to decide which goes first 

if conditions.current_filter == self.filtername2: 

result = observations_paired + observations 

else: 

result = observations + observations_paired 

 

# Let's tag which one is supposed to be first/second in the pair: 

for i in range(0, int(np.size(result)/2), 1): 

result[i]['note'] = '%s, a' % (self.survey_note) 

for i in range(int(np.size(result)/2), np.size(result), 1): 

result[i]['note'] = '%s, b' % (self.survey_note) 

 

return result