Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

import unittest 

 

 

import lsst.utils.tests 

import lsst.afw.image as afwImage 

import lsst.afw.math as afwMath 

import lsst.afw.geom as afwGeom 

import lsst.ip.diffim as ipDiffim 

import lsst.ip.diffim.diffimTools as diffimTools 

import lsst.log.utils as logUtils 

import lsst.pex.config as pexConfig 

 

logUtils.traceSetAt("ip.diffim", 4) 

 

 

class DiffimTestCases(lsst.utils.tests.TestCase): 

 

def setUp(self): 

self.config = ipDiffim.ImagePsfMatchTask.ConfigClass() 

self.config.kernel.name = "DF" 

self.subconfig = self.config.kernel.active 

 

self.kList = ipDiffim.makeKernelBasisList(self.subconfig) 

self.policy = pexConfig.makePolicy(self.subconfig) 

self.policy.set("useRegularization", False) 

 

def tearDown(self): 

del self.config 

del self.policy 

del self.kList 

 

def makeCandidate(self, kSum, x, y, size=51): 

mi1 = afwImage.MaskedImageF(afwGeom.Extent2I(size, size)) 

mi1.getVariance().set(1.0) # avoid NaNs 

mi1[size//2, size//2, afwImage.LOCAL] = (1, 0x0, 1) 

mi2 = afwImage.MaskedImageF(afwGeom.Extent2I(size, size)) 

mi2.getVariance().set(1.0) # avoid NaNs 

mi2[size//2, size//2, afwImage.LOCAL] = (kSum, 0x0, kSum) 

kc = ipDiffim.makeKernelCandidate(x, y, mi1, mi2, self.policy) 

return kc 

 

def testGaussian(self, size=51): 

gaussFunction = afwMath.GaussianFunction2D(2, 3) 

gaussKernel = afwMath.AnalyticKernel(size, size, gaussFunction) 

 

imagePca1 = ipDiffim.KernelPcaD() # mean subtract 

imagePca2 = ipDiffim.KernelPcaD() # don't mean subtract 

kpv1 = ipDiffim.KernelPcaVisitorF(imagePca1) 

kpv2 = ipDiffim.KernelPcaVisitorF(imagePca2) 

 

kRefIm = None 

 

for i in range(100): 

kImage1 = afwImage.ImageD(gaussKernel.getDimensions()) 

gaussKernel.computeImage(kImage1, False) 

kImage1 *= 10000 # to get some decent peak source counts 

kImage1 += 10 # to get some sky background noise 

 

if kRefIm is None: 

kRefIm = kImage1 

 

kImage1 = diffimTools.makePoissonNoiseImage(kImage1) 

kImage2 = afwImage.ImageD(kImage1, True) 

 

imagePca1.addImage(kImage1, 1.0) 

imagePca2.addImage(kImage2, 1.0) 

 

kpv1.subtractMean() 

 

imagePca1.analyze() 

imagePca2.analyze() 

 

pcaBasisList1 = kpv1.getEigenKernels() 

pcaBasisList2 = kpv2.getEigenKernels() 

 

eVal1 = imagePca1.getEigenValues() 

eVal2 = imagePca2.getEigenValues() 

 

# First term is far more signficant without mean subtraction 

self.assertGreater(eVal2[0], eVal1[0]) 

 

# Last term basically zero with mean subtraction 

self.assertAlmostEqual(eVal1[-1], 0.0) 

 

# Extra image with mean subtraction 

self.assertEqual(len(pcaBasisList1), (len(eVal1) + 1)) 

 

# Same shape 

self.assertEqual(len(pcaBasisList2), len(eVal2)) 

 

# Mean kernel close to kRefIm 

kImageM = afwImage.ImageD(gaussKernel.getDimensions()) 

pcaBasisList1[0].computeImage(kImageM, False) 

for y in range(kRefIm.getHeight()): 

for x in range(kRefIm.getWidth()): 

self.assertLess(abs(kRefIm[x, y, afwImage.LOCAL] - kImageM[x, y, afwImage.LOCAL]) / 

kRefIm[x, y, afwImage.LOCAL], 0.2) 

 

# First mean-unsubtracted Pca kernel close to kRefIm (normalized to peak of 1.0) 

kImage0 = afwImage.ImageD(gaussKernel.getDimensions()) 

pcaBasisList2[0].computeImage(kImage0, False) 

maxVal = afwMath.makeStatistics(kRefIm, afwMath.MAX).getValue(afwMath.MAX) 

kRefIm /= maxVal 

for y in range(kRefIm.getHeight()): 

for x in range(kRefIm.getWidth()): 

self.assertLess(abs(kRefIm[x, y, afwImage.LOCAL] - kImage0[x, y, afwImage.LOCAL]) / 

kRefIm[x, y, afwImage.LOCAL], 0.2) 

 

def testImagePca(self): 

# Test out the ImagePca behavior 

kc1 = self.makeCandidate(1, 0.0, 0.0) 

kc1.build(self.kList) 

kc2 = self.makeCandidate(2, 0.0, 0.0) 

kc2.build(self.kList) 

kc3 = self.makeCandidate(3, 0.0, 0.0) 

kc3.build(self.kList) 

 

imagePca = ipDiffim.KernelPcaD() 

kpv = ipDiffim.KernelPcaVisitorF(imagePca) 

kpv.processCandidate(kc1) 

kpv.processCandidate(kc2) 

kpv.processCandidate(kc3) 

 

imagePca.analyze() 

eigenImages = imagePca.getEigenImages() 

# NOTE : this needs to be changed once ticket #1649 is resolved 

for i in range(len(eigenImages)): 

for j in range(i, len(eigenImages)): 

print(i, j, afwImage.innerProduct(eigenImages[i], eigenImages[j])) 

 

def testEigenValues(self): 

kc1 = self.makeCandidate(1, 0.0, 0.0) 

kc1.build(self.kList) 

 

kc2 = self.makeCandidate(2, 0.0, 0.0) 

kc2.build(self.kList) 

 

kc3 = self.makeCandidate(3, 0.0, 0.0) 

kc3.build(self.kList) 

 

imagePca = ipDiffim.KernelPcaD() 

kpv = ipDiffim.KernelPcaVisitorF(imagePca) 

kpv.processCandidate(kc1) 

kpv.processCandidate(kc2) 

kpv.processCandidate(kc3) 

 

imagePca.analyze() 

eigenImages = imagePca.getEigenImages() 

eigenValues = imagePca.getEigenValues() 

 

# took in 3 images 

self.assertEqual(len(eigenImages), 3) 

self.assertEqual(len(eigenValues), 3) 

 

# all the same shape, only 1 eigenvalue 

self.assertAlmostEqual(eigenValues[0], 1.0) 

self.assertAlmostEqual(eigenValues[1], 0.0) 

self.assertAlmostEqual(eigenValues[2], 0.0) 

 

def testMeanSubtraction(self): 

kc1 = self.makeCandidate(1, 0.0, 0.0) 

kc1.build(self.kList) 

 

kc2 = self.makeCandidate(2, 0.0, 0.0) 

kc2.build(self.kList) 

 

kc3 = self.makeCandidate(3, 0.0, 0.0) 

kc3.build(self.kList) 

 

imagePca = ipDiffim.KernelPcaD() 

kpv = ipDiffim.KernelPcaVisitorF(imagePca) 

kpv.processCandidate(kc1) 

kpv.processCandidate(kc2) 

kpv.processCandidate(kc3) 

kpv.subtractMean() # subtract it *from* imagePca 

 

imagePca.analyze() 

eigenImages = imagePca.getEigenImages() 

eigenValues = imagePca.getEigenValues() 

 

# took in 3 images 

self.assertEqual(len(eigenImages), 3) 

self.assertEqual(len(eigenValues), 3) 

 

# all the same shape, mean subtracted, so *no* eigenvalues 

self.assertAlmostEqual(eigenValues[0], 0.0) 

self.assertAlmostEqual(eigenValues[1], 0.0) 

self.assertAlmostEqual(eigenValues[2], 0.0) 

 

# finally, since imagePca normalizes by the sum, this should 

# have central pixel value 1.0 and the rest 0.0 

imageMean = kpv.returnMean() 

rows = imageMean.getHeight() 

cols = imageMean.getWidth() 

for y in range(rows): 

for x in range(cols): 

if x == cols // 2 and y == rows // 2: 

self.assertAlmostEqual(imageMean[x, y, afwImage.LOCAL], 1.0) 

else: 

self.assertAlmostEqual(imageMean[x, y, afwImage.LOCAL], 0.0) 

 

def testVisit(self, nCell=3): 

imagePca = ipDiffim.KernelPcaD() 

kpv = ipDiffim.makeKernelPcaVisitor(imagePca) 

 

sizeCellX = self.policy.get("sizeCellX") 

sizeCellY = self.policy.get("sizeCellY") 

 

kernelCellSet = afwMath.SpatialCellSet(afwGeom.Box2I(afwGeom.Point2I(0, 

0), 

afwGeom.Extent2I(sizeCellX * nCell, 

sizeCellY * nCell)), 

sizeCellX, 

sizeCellY) 

 

for candX in range(nCell): 

for candY in range(nCell): 

if candX == nCell // 2 and candY == nCell // 2: 

kc = self.makeCandidate(100.0, 

candX * sizeCellX + sizeCellX // 2, 

candY * sizeCellY + sizeCellY // 2) 

else: 

kc = self.makeCandidate(1.0, 

candX * sizeCellX + sizeCellX // 2, 

candY * sizeCellY + sizeCellY // 2) 

kc.build(self.kList) 

kernelCellSet.insertCandidate(kc) 

 

kernelCellSet.visitCandidates(kpv, 1) 

imagePca.analyze() 

eigenImages = imagePca.getEigenImages() 

eigenValues = imagePca.getEigenValues() 

 

# took in 3 images 

self.assertEqual(len(eigenImages), nCell * nCell) 

self.assertEqual(len(eigenValues), nCell * nCell) 

 

# all the same shape, only 1 eigenvalue 

self.assertAlmostEqual(eigenValues[0], 1.0) 

self.assertAlmostEqual(eigenValues[1], 0.0) 

self.assertAlmostEqual(eigenValues[2], 0.0) 

 

##### 

 

 

class TestMemory(lsst.utils.tests.MemoryTestCase): 

pass 

 

 

def setup_module(module): 

lsst.utils.tests.init() 

 

 

254 ↛ 255line 254 didn't jump to line 255, because the condition on line 254 was never trueif __name__ == "__main__": 

lsst.utils.tests.init() 

unittest.main()