Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

# This file is part of daf_butler. 

# 

# Developed for the LSST Data Management System. 

# This product includes software developed by the LSST Project 

# (http://www.lsst.org). 

# See the COPYRIGHT file at the top-level directory of this distribution 

# for details of code ownership. 

# 

# This program is free software: you can redistribute it and/or modify 

# it under the terms of the GNU General Public License as published by 

# the Free Software Foundation, either version 3 of the License, or 

# (at your option) any later version. 

# 

# This program is distributed in the hope that it will be useful, 

# but WITHOUT ANY WARRANTY; without even the implied warranty of 

# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

# GNU General Public License for more details. 

# 

# You should have received a copy of the GNU General Public License 

# along with this program. If not, see <http://www.gnu.org/licenses/>. 

 

__all__ = ("Formatter", "FormatterFactory") 

 

from abc import ABCMeta, abstractmethod 

import logging 

 

from .configSupport import processLookupConfigs 

from .mappingFactory import MappingFactory 

from .utils import getFullTypeName 

 

log = logging.getLogger(__name__) 

 

 

class Formatter(metaclass=ABCMeta): 

"""Interface for reading and writing Datasets with a particular 

`StorageClass`. 

""" 

 

unsupportedParameters = frozenset() 

"""Set of parameters not understood by this `Formatter`. An empty set means 

all parameters are supported. `None` indicates that no parameters 

are supported. 

""" 

 

@classmethod 

def name(cls): 

"""Returns the fully qualified name of the formatter. 

""" 

return getFullTypeName(cls) 

 

@abstractmethod 

def read(self, fileDescriptor, component=None): 

"""Read a Dataset. 

 

Parameters 

---------- 

fileDescriptor : `FileDescriptor` 

Identifies the file to read, type to read it into and parameters 

to be used for reading. 

component : `str`, optional 

Component to read from the file. Only used if the `StorageClass` 

for reading differed from the `StorageClass` used to write the 

file. 

 

Returns 

------- 

inMemoryDataset : `InMemoryDataset` 

The requested Dataset. 

""" 

raise NotImplementedError("Type does not support reading") 

 

@abstractmethod 

def write(self, inMemoryDataset, fileDescriptor): 

"""Write a Dataset. 

 

Parameters 

---------- 

inMemoryDataset : `InMemoryDataset` 

The Dataset to store. 

fileDescriptor : `FileDescriptor` 

Identifies the file to write. 

 

Returns 

------- 

path : `str` 

The path to where the Dataset was stored. 

""" 

raise NotImplementedError("Type does not support writing") 

 

@abstractmethod 

def predictPath(self, location): 

"""Return the path that would be returned by write, without actually 

writing. 

 

location : `Location` 

The location to simulate writing to. 

""" 

raise NotImplementedError("Type does not support writing") 

 

def segregateParameters(self, parameters): 

"""Segregate the supplied parameters into those understood by the 

formatter and those not understood by the formatter. 

 

Any unsupported parameters are assumed to be usable by associated 

assemblers. 

 

Parameters 

---------- 

parameters : `dict` 

Parameters with values that have been supplied by the caller 

and which might be relevant for the formatter. 

 

Returns 

------- 

supported : `dict` 

Those parameters supported by this formatter. 

unsupported : `dict` 

Those parameters not supported by this formatter. 

""" 

 

if parameters is None: 

return {}, {} 

 

if self.unsupportedParameters is None: 

# Support none of the parameters 

return {}, parameters.copy() 

 

# Start by assuming all are supported 

supported = parameters.copy() 

unsupported = {} 

 

# And remove any we know are not supported 

for p in set(supported): 

if p in self.unsupportedParameters: 

unsupported[p] = supported.pop(p) 

 

return supported, unsupported 

 

 

class FormatterFactory: 

"""Factory for `Formatter` instances. 

""" 

 

def __init__(self): 

self._mappingFactory = MappingFactory(Formatter) 

 

def __contains__(self, key): 

"""Indicates whether the supplied key is present in the factory. 

 

Parameters 

---------- 

key : `LookupKey`, `str` or objects with ``name`` attribute 

Key to use to lookup in the factory whether a corresponding 

formatter is present. 

 

Returns 

------- 

in : `bool` 

`True` if the supplied key is present in the factory. 

""" 

return key in self._mappingFactory 

 

def normalizeDimensions(self, universe): 

"""Normalize formatter lookups that use dimensions. 

 

Parameters 

---------- 

universe : `DimensionUniverse` 

The set of all known dimensions. If `None`, returns without 

action. 

 

Notes 

----- 

Goes through all registered formatters, and for keys that include 

dimensions, rewrites those keys to use a verified set of 

dimensions. 

 

Returns without action if the formatter keys have already been 

normalized. 

 

Raises 

------ 

ValueError 

Raised if a key exists where a dimension is not part of 

the ``universe``. 

""" 

return self._mappingFactory.normalizeRegistryDimensions(universe) 

 

def registerFormatters(self, config, universe=None): 

"""Bulk register formatters from a config. 

 

Parameters 

---------- 

config : `Config` 

``formatters`` section of a configuration. 

universe : `DimensionUniverse`, optional 

The set of all known dimensions. If not `None`, any look up keys 

involving dimensions will be normalized. The normalization flag 

will be cleared each time this method is called without a 

universe. 

 

Notes 

----- 

The configuration can include one level of hierarchy where an 

instrument-specific section can be defined to override more general 

template specifications. This is represented in YAML using a 

key of form ``instrument<name>`` which can then define templates 

that will be returned if a `DatasetRef` contains a matching instrument 

name in the data ID. 

 

The config is parsed using the function 

`~lsst.daf.butler.configSubset.processLookupConfigs`. 

""" 

contents = processLookupConfigs(config) 

for key, f in contents.items(): 

self.registerFormatter(key, f) 

 

if universe is not None: 

self.normalizeDimensions(universe) 

else: 

# Trigger new normalization round since new formatters have 

# been added without a universe. 

self._mappingFactory.normalized = False 

 

def getLookupKeys(self): 

"""Retrieve the look up keys for all the registry entries. 

 

Returns 

------- 

keys : `set` of `LookupKey` 

The keys available for matching in the registry. 

""" 

return self._mappingFactory.getLookupKeys() 

 

def getFormatterWithMatch(self, entity): 

"""Get a new formatter instance along with the matching registry 

key. 

 

Parameters 

---------- 

entity : `DatasetRef`, `DatasetType` or `StorageClass`, or `str` 

Entity to use to determine the formatter to return. 

`StorageClass` will be used as a last resort if `DatasetRef` 

or `DatasetType` instance is provided. Supports instrument 

override if a `DatasetRef` is provided configured with an 

``instrument`` value for the data ID. 

 

Returns 

------- 

matchKey : `LookupKey` 

The key that resulted in the successful match. 

formatter : `Formatter` 

An instance of the registered formatter. 

""" 

if isinstance(entity, str): 

names = (entity,) 

else: 

# Normalize the registry to a universe if not already done 

if not self._mappingFactory.normalized: 

try: 

universe = entity.dimensions.universe 

except AttributeError: 

pass 

else: 

self._mappingFactory.normalizeRegistryDimensions(universe) 

 

names = entity._lookupNames() 

matchKey, formatter = self._mappingFactory.getFromRegistryWithMatch(*names) 

log.debug("Retrieved formatter from key '%s' for entity '%s'", matchKey, entity) 

 

return matchKey, formatter 

 

def getFormatter(self, entity): 

"""Get a new formatter instance. 

 

Parameters 

---------- 

entity : `DatasetRef`, `DatasetType` or `StorageClass`, or `str` 

Entity to use to determine the formatter to return. 

`StorageClass` will be used as a last resort if `DatasetRef` 

or `DatasetType` instance is provided. Supports instrument 

override if a `DatasetRef` is provided configured with an 

``instrument`` value for the data ID. 

 

Returns 

------- 

formatter : `Formatter` 

An instance of the registered formatter. 

""" 

_, formatter = self.getFormatterWithMatch(entity) 

return formatter 

 

def registerFormatter(self, type_, formatter): 

"""Register a `Formatter`. 

 

Parameters 

---------- 

type_ : `LookupKey`, `str` or `StorageClass` or `DatasetType` 

Type for which this formatter is to be used. If a `LookupKey` 

is not provided, one will be constructed from the supplied string 

or by using the ``name`` property of the supplied entity. 

formatter : `str` 

Identifies a `Formatter` subclass to use for reading and writing 

Datasets of this type. 

 

Raises 

------ 

ValueError 

Raised if the formatter does not name a valid formatter type. 

""" 

self._mappingFactory.placeInRegistry(type_, formatter)