Coverage for python/astro_metadata_translator/translators/suprimecam.py : 30%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
# This file is part of astro_metadata_translator. # # Developed for the LSST Data Management System. # This product includes software developed by the LSST Project # (http://www.lsst.org). # See the LICENSE file at the top-level directory of this distribution # for details of code ownership. # # Use of this source code is governed by a 3-clause BSD-style # license that can be found in the LICENSE file.
"""Metadata translator for HSC standard headers. """
"""Name of this translation class"""
"""Supports the SuprimeCam instrument."""
"""Default resource path root to use to locate header correction files."""
"detector_group": None} """Constant mappings"""
"object": "OBJECT", "science_program": "PROP-ID", "detector_num": "DET-ID", "detector_serial": "DETECTOR", # DETECTOR is the "call name" "boresight_airmass": "AIRMASS", "relative_humidity": "OUT-HUM", "temperature": ("OUT-TMP", dict(unit=u.K)), "pressure": ("OUT-PRS", dict(unit=u.hPa)), "exposure_time": ("EXPTIME", dict(unit=u.s)), "dark_time": ("EXPTIME", dict(unit=u.s)), # Assume same as exposure time } """One-to-one mappings"""
# Zero point for SuprimeCam dates: 2004-01-01
"""Indicate whether this translation class can translate the supplied header.
Parameters ---------- header : `dict`-like Header to convert to standardized form. filename : `str`, optional Name of file being translated.
Returns ------- can : `bool` `True` if the header is recognized by this class. `False` otherwise. """ if "INSTRUME" in header: return header["INSTRUME"] == "SuprimeCam"
for k in ("EXP-ID", "FRAMEID"): if cls.is_keyword_defined(header, k): if header[k].startswith("SUP"): return True return False
"""Calculate the modified julian date offset from reference day
Returns ------- offset : `int` Offset day count from reference day. """ mjd = self._header["MJD"] self._used_these_cards("MJD") return int(mjd) - self._DAY0
def to_physical_filter(self): # Docstring will be inherited. Property defined in properties.py value = self._header["FILTER01"].strip().upper() self._used_these_cards("FILTER01") return value
def to_datetime_begin(self): # Docstring will be inherited. Property defined in properties.py # We know it is UTC value = self._from_fits_date_string(self._header["DATE-OBS"], time_str=self._header["UT-STR"], scale="utc") self._used_these_cards("DATE-OBS", "UT-STR") return value
def to_datetime_end(self): # Docstring will be inherited. Property defined in properties.py # We know it is UTC value = self._from_fits_date_string(self._header["DATE-OBS"], time_str=self._header["UT-END"], scale="utc") self._used_these_cards("DATE-OBS", "UT-END")
# Sometimes the end time is less than the begin time plus the # exposure time so we have to check for that. exposure_time = self.to_exposure_time() datetime_begin = self.to_datetime_begin() exposure_end = datetime_begin + exposure_time if value < exposure_end: value = exposure_end
return value
def to_exposure_id(self): """Calculate unique exposure integer for this observation
Returns ------- visit : `int` Integer uniquely identifying this exposure. """ exp_id = self._header["EXP-ID"].strip() m = re.search(r"^SUP[A-Z](\d{7})0$", exp_id) if not m: raise RuntimeError("Unable to interpret EXP-ID: %s" % exp_id) exposure = int(m.group(1)) if int(exposure) == 0: # Don't believe it frame_id = self._header["FRAMEID"].strip() m = re.search(r"^SUP[A-Z](\d{7})\d{1}$", frame_id) if not m: raise RuntimeError("Unable to interpret FRAMEID: %s" % frame_id) exposure = int(m.group(1)) self._used_these_cards("EXP-ID", "FRAMEID") return exposure
def to_visit_id(self): """Calculate the unique integer ID for this visit.
Assumed to be identical to the exposure ID in this implementation.
Returns ------- exp : `int` Unique visit identifier. """ if self.to_observation_type() == "science": return self.to_exposure_id() return None
def to_observation_type(self): """Calculate the observation type.
Returns ------- typ : `str` Observation type. Normalized to standard set. """ obstype = self._header["DATA-TYP"].strip().lower() self._used_these_cards("DATA-TYP") if obstype == "object": return "science" return obstype
def to_tracking_radec(self): # Docstring will be inherited. Property defined in properties.py radec = SkyCoord(self._header["RA2000"], self._header["DEC2000"], frame="icrs", unit=(u.hourangle, u.deg), obstime=self.to_datetime_begin(), location=self.to_location()) self._used_these_cards("RA2000", "DEC2000") return radec
def to_altaz_begin(self): # Docstring will be inherited. Property defined in properties.py return altaz_from_degree_headers(self, (("ALTITUDE", "AZIMUTH"),), self.to_datetime_begin())
def to_boresight_rotation_angle(self): # Docstring will be inherited. Property defined in properties.py angle = Angle(self.quantity_from_card("INR-STR", u.deg)) angle = angle.wrap_at("360d") return angle
def to_detector_exposure_id(self): # Docstring will be inherited. Property defined in properties.py return self.to_exposure_id() * 10 + self.to_detector_num()
def to_detector_name(self): # Docstring will be inherited. Property defined in properties.py # See https://subarutelescope.org/Observing/Instruments/SCam/ccd.html num = self.to_detector_num()
names = ( "nausicaa", "kiki", "fio", "sophie", "sheeta", "satsuki", "chihiro", "clarisse", "ponyo", "san", )
return names[num] |