Coverage for tests/test_getRegionTimeFromVisit.py: 31%

59 statements  

« prev     ^ index     » next       coverage.py v7.5.0, created at 2024-05-01 04:34 -0700

1# This file is part of pipe_tasks. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (https://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <https://www.gnu.org/licenses/>. 

21 

22import unittest 

23import tempfile 

24 

25import astropy.time 

26import pandas as pd 

27 

28import lsst.utils.tests 

29from lsst.sphgeom import ConvexPolygon, UnitVector3d 

30import lsst.daf.butler 

31import lsst.daf.butler.tests as butlerTests 

32import lsst.pipe.base.testUtils as pipeTests 

33 

34from lsst.pipe.tasks.getRegionTimeFromVisit import GetRegionTimeFromVisitTask 

35 

36 

37class GetRegionTimeFromVisitTests(lsst.utils.tests.TestCase): 

38 def setUp(self): 

39 instrument = "NotACam" 

40 detector = 42 

41 group = "groupy" 

42 exposure = 1011 

43 filter = "k2024" 

44 # Coordinates taken from LATISS exposure 2024040800445 

45 day_obs = 20240408 

46 ra = 122.47171635551595 

47 dec = -36.20378247543336 

48 rot = 359.99623587800414 

49 self.region = ConvexPolygon( 

50 [UnitVector3d(-0.43197476135299717, 0.6808244361827491, -0.5915030791555212), 

51 UnitVector3d(-0.4337643437542999, 0.6796857349601265, -0.5915029972697637), 

52 UnitVector3d(-0.4344262837761736, 0.6807261608742085, -0.5898183600617098), 

53 UnitVector3d(-0.43263670132940496, 0.6818648620502468, -0.5898184420345037), 

54 ]) 

55 self.times = lsst.daf.butler.Timespan(astropy.time.Time("2024-04-09T03:50:00", scale="tai"), 

56 astropy.time.Time("2024-04-09T03:50:30", scale="tai")) 

57 

58 repo_dir = tempfile.TemporaryDirectory(ignore_cleanup_errors=True) 

59 self.addCleanup(tempfile.TemporaryDirectory.cleanup, repo_dir) 

60 self.repo = butlerTests.makeTestRepo(repo_dir.name) 

61 

62 butlerTests.addDataIdValue(self.repo, "instrument", instrument) 

63 butlerTests.addDataIdValue(self.repo, "day_obs", day_obs) 

64 butlerTests.addDataIdValue(self.repo, "physical_filter", filter) 

65 butlerTests.addDataIdValue(self.repo, "detector", detector) 

66 butlerTests.addDataIdValue(self.repo, "group", group) 

67 # addDataIdValue can't handle metadata, or tables that don't have an ID column 

68 self.repo.registry.insertDimensionData("exposure", {"id": exposure, 

69 "instrument": instrument, 

70 "group": group, 

71 "day_obs": day_obs, 

72 "physical_filter": filter, 

73 "tracking_ra": ra, 

74 "tracking_dec": dec, 

75 "sky_angle": rot, 

76 "timespan": self.times, 

77 }) 

78 self.repo.registry.insertDimensionData("visit", {"id": exposure, 

79 "instrument": instrument, 

80 "day_obs": day_obs, 

81 "physical_filter": filter, 

82 "timespan": self.times, 

83 }) 

84 self.repo.registry.insertDimensionData("visit_definition", {"instrument": instrument, 

85 "exposure": exposure, 

86 "visit": exposure, 

87 }) 

88 self.repo.registry.insertDimensionData("visit_detector_region", {"instrument": instrument, 

89 "visit": exposure, 

90 "detector": detector, 

91 "region": self.region, 

92 }) 

93 

94 butlerTests.addDatasetType(self.repo, "regionTimeInfo", {"instrument", "group", "detector"}, 

95 "RegionTimeInfo") 

96 butlerTests.addDatasetType(self.repo, "goodSeeingDiff_diaSrcTable", 

97 {"instrument", "visit", "detector"}, "DataFrame") 

98 # pipeTests.makeQuantum needs outputs registered even if graph generation does not. 

99 butlerTests.addDatasetType(self.repo, "getRegionTimeFromVisit_dummy", 

100 {"instrument", "exposure"}, "int") 

101 

102 self.group_id = self.repo.registry.expandDataId( 

103 {"instrument": instrument, "group": group, "detector": detector}) 

104 self.exposure_id = self.repo.registry.expandDataId( 

105 {"instrument": instrument, "exposure": exposure}) 

106 self.visit_id = self.repo.registry.expandDataId( 

107 {"instrument": instrument, "visit": exposure, "detector": detector}) 

108 

109 def test_runQuantum(self): 

110 butler = butlerTests.makeTestCollection(self.repo, uniqueId=self.id()) 

111 butler.put(pd.DataFrame(), "goodSeeingDiff_diaSrcTable", self.visit_id) 

112 

113 task = GetRegionTimeFromVisitTask() 

114 quantum = pipeTests.makeQuantum( 

115 task, butler, self.group_id, 

116 {"output": self.group_id, 

117 "dummy_visit": self.visit_id, 

118 "dummy_exposure": [self.exposure_id], 

119 }) 

120 

121 pipeTests.runTestQuantum(task, butler, quantum, mockRun=False) 

122 

123 # Not exactly round-tripping, because these objects came from the dimension records. 

124 info = butler.get("regionTimeInfo", self.group_id) 

125 self.assertEqual(info.region, self.region) 

126 self.assertEqual(info.timespan, self.times) 

127 

128 def test_connections(self): 

129 pipeTests.lintConnections(GetRegionTimeFromVisitTask.ConfigClass.ConnectionsClass) 

130 

131 

132def setup_module(module): 

133 lsst.utils.tests.init() 

134 

135 

136class MemoryTestCase(lsst.utils.tests.MemoryTestCase): 

137 pass 

138 

139 

140if __name__ == "__main__": 140 ↛ 141line 140 didn't jump to line 141, because the condition on line 140 was never true

141 lsst.utils.tests.init() 

142 unittest.main()