Coverage for tests/test_MomentsClassifier.py: 28%

50 statements  

« prev     ^ index     » next       coverage.py v7.4.4, created at 2024-03-22 02:35 -0700

1# This file is part of meas_base. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (https://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <https://www.gnu.org/licenses/>. 

21 

22import unittest 

23 

24import lsst.meas.base as measBase 

25import lsst.meas.base.tests 

26import lsst.utils.tests 

27import numpy as np 

28 

29 

30class MomentsClassificationTestCase(lsst.meas.base.tests.AlgorithmTestCase, lsst.utils.tests.TestCase): 

31 

32 def setUp(self): 

33 self.bbox = lsst.geom.Box2I(lsst.geom.Point2I(-20, -20), 

34 lsst.geom.Extent2I(250, 150)) 

35 self.dataset = lsst.meas.base.tests.TestDataset(self.bbox) 

36 

37 self.n_stars = 1 

38 self.n_gals = 1 

39 # First 10 sources are point sources 

40 self.dataset.addSource(1000.0, lsst.geom.Point2D(50.1, 49.8)) 

41 # Following 10 sources are extended sources 

42 self.dataset.addSource(5000.0, lsst.geom.Point2D(149.9, 50.3), 

43 lsst.afw.geom.Quadrupole(1, 1.2, 0.3)) 

44 

45 def tearDown(self): 

46 del self.bbox 

47 del self.dataset 

48 

49 def testSingleFramePlugin(self): 

50 config = measBase.SingleFrameMeasurementConfig() 

51 task = self.makeSingleFrameMeasurementTask(config=config) 

52 exposure, catalog = self.dataset.realize(10.0, task.schema, randomSeed=3) 

53 task.run(catalog, exposure) 

54 for ii in range(self.n_stars): 

55 self.assertLess(catalog[ii].get("base_ClassificationSizeExtendedness_value"), 0.1) 

56 for ii in range(self.n_stars, self.n_stars + self.n_gals): 

57 self.assertGreater(catalog[ii].get("base_ClassificationSizeExtendedness_value"), 0.02) 

58 

59 @lsst.utils.tests.methodParameters(noise=(0.001, 0.01)) 

60 def testMonteCarlo(self, noise: float, n_trials: int = 100): 

61 """Test an ideal simulation, with no noise. 

62 

63 Demonstrate that: 

64 

65 - We get exactly the right answer, and 

66 - The reported uncertainty agrees with a Monte Carlo test of the noise. 

67 

68 Parameters 

69 ---------- 

70 noise : float 

71 Noise level to use in the simulation. 

72 n_trials : int 

73 Number of trials to use in the Monte Carlo test. 

74 """ 

75 config = measBase.SingleFrameMeasurementConfig() 

76 task = self.makeSingleFrameMeasurementTask(config=config) 

77 

78 star_measures, galaxy_measures = [], [] 

79 for ii in range(n_trials): 

80 exposure, catalog = self.dataset.realize(1000.0*noise, task.schema, randomSeed=ii) 

81 task.run(catalog, exposure) 

82 for ii in range(self.n_stars): 

83 star_measures.append(catalog[ii].get("base_ClassificationSizeExtendedness_value")) 

84 for ii in range(self.n_stars, self.n_stars + self.n_gals): 

85 galaxy_measures.append(catalog[ii].get("base_ClassificationSizeExtendedness_value")) 

86 

87 # Mapping noise level to thresholds for stars and galaxies 

88 star_threshold = { 

89 0.001: 0.01, 

90 0.01: 0.1 

91 } 

92 galaxy_threshold = { 

93 0.001: 0.25, 

94 0.01: 0.25, 

95 } 

96 self.assertLess(np.mean(star_measures), star_threshold[noise]) 

97 self.assertLess(np.percentile(star_measures, 50), star_threshold[noise]) 

98 self.assertGreater(np.mean(galaxy_measures), galaxy_threshold[noise]) 

99 self.assertGreater(np.percentile(galaxy_measures, 50), galaxy_threshold[noise]) 

100 

101 

102class TestMemory(lsst.utils.tests.MemoryTestCase): 

103 pass 

104 

105 

106def setup_module(module): 

107 lsst.utils.tests.init() 

108 

109 

110if __name__ == "__main__": 110 ↛ 111line 110 didn't jump to line 111, because the condition on line 110 was never true

111 lsst.utils.tests.init() 

112 unittest.main()