Fit a dipole model using an image difference.
See also:
`DMTN-007: Dipole characterization for image differencing <https://dmtn-007.lsst.io>`_.
Definition at line 487 of file dipoleFitTask.py.
lsst.ip.diffim.dipoleFitTask.DipoleFitAlgorithm.fitDipole |
( |
| self, |
|
|
| source, |
|
|
| tol = 1e-7, |
|
|
| rel_weight = 0.1, |
|
|
| fitBackground = 1, |
|
|
| maxSepInSigma = 5., |
|
|
| separateNegParams = True, |
|
|
| bgGradientOrder = 1, |
|
|
| verbose = False, |
|
|
| display = False ) |
Fit a dipole model to an input ``diaSource`` (wraps `fitDipoleImpl`).
Actually, fits the subimage bounded by the input source's
footprint) and optionally constrain the fit using the
pre-subtraction images self.posImage (science) and
self.negImage (template). Wraps the output into a
`pipeBase.Struct` named tuple after computing additional
statistics such as orientation and SNR.
Parameters
----------
source : `lsst.afw.table.SourceRecord`
Record containing the (merged) dipole source footprint detected on the diffim
tol : `float`, optional
Tolerance parameter for scipy.leastsq() optimization
rel_weight : `float`, optional
Weighting of posImage/negImage relative to the diffim in the fit
fitBackground : `int`, {0, 1, 2}, optional
How to fit linear background gradient in posImage/negImage
- 0: do not fit background at all
- 1 (default): pre-fit the background using linear least squares and then do not fit it
as part of the dipole fitting optimization
- 2: pre-fit the background using linear least squares (as in 1), and use the parameter
estimates from that fit as starting parameters for an integrated "re-fit" of the
background as part of the overall dipole fitting optimization.
maxSepInSigma : `float`, optional
Allowed window of centroid parameters relative to peak in input source footprint
separateNegParams : `bool`, optional
Fit separate parameters to the flux and background gradient in
bgGradientOrder : `int`, {0, 1, 2}, optional
Desired polynomial order of background gradient
verbose: `bool`, optional
Be verbose
display
Display input data, best fit model(s) and residuals in a matplotlib window.
Returns
-------
result : `struct`
`pipeBase.Struct` object containing the fit parameters and other information.
result : `callable`
`lmfit.MinimizerResult` object for debugging and error estimation, etc.
Notes
-----
Parameter `fitBackground` has three options, thus it is an integer:
Definition at line 793 of file dipoleFitTask.py.
lsst.ip.diffim.dipoleFitTask.DipoleFitAlgorithm.fitDipoleImpl |
( |
| self, |
|
|
| source, |
|
|
| tol = 1e-7, |
|
|
| rel_weight = 0.5, |
|
|
| fitBackground = 1, |
|
|
| bgGradientOrder = 1, |
|
|
| maxSepInSigma = 5., |
|
|
| separateNegParams = True, |
|
|
| verbose = False ) |
Fit a dipole model to an input difference image.
Actually, fits the subimage bounded by the input source's
footprint) and optionally constrain the fit using the
pre-subtraction images posImage and negImage.
Parameters
----------
source : TODO: DM-17458
TODO: DM-17458
tol : float, optional
TODO: DM-17458
rel_weight : `float`, optional
TODO: DM-17458
fitBackground : `int`, optional
TODO: DM-17458
bgGradientOrder : `int`, optional
TODO: DM-17458
maxSepInSigma : `float`, optional
TODO: DM-17458
separateNegParams : `bool`, optional
TODO: DM-17458
verbose : `bool`, optional
TODO: DM-17458
Returns
-------
result : `lmfit.MinimizerResult`
return `lmfit.MinimizerResult` object containing the fit
parameters and other information.
Definition at line 540 of file dipoleFitTask.py.