lsst.geom ga1e77700b3+03d07e1c1f
Loading...
Searching...
No Matches
Public Member Functions | List of all members
lsst::geom::polynomials::Scaling1d Class Reference

A 1-d affine transform that can be used to map one interval to another. More...

#include <Scaling1d.h>

Public Member Functions

 Scaling1d (double scale, double shift) noexcept
 Construct from the given multiplicative scale and additive shift.
 
 Scaling1d (Scaling1d const &) noexcept=default
 Default copy constructor.
 
 Scaling1d (Scaling1d &&) noexcept=default
 Default move constructor.
 
Scaling1doperator= (Scaling1d const &) noexcept=default
 Default copy assignment.
 
Scaling1doperator= (Scaling1d &&) noexcept=default
 Default move assignment.
 
double applyForward (double x) const noexcept
 Apply the transform in the forward direction.
 
double applyInverse (double y) const noexcept
 Apply the inverse of the forward transform;.
 
double getScale () const noexcept
 Return the multiplicative scaling.
 
double getShift () const noexcept
 Return the additive shift.
 
Scaling1d inverted () const noexcept
 Invert the transform.
 
Scaling1d then (Scaling1d const &second) const noexcept
 Compose two transforms.
 

Detailed Description

A 1-d affine transform that can be used to map one interval to another.

The transform is represented as an additive shift followed by a multiplicative scaling.

Note
This class (and especially its 2-d counterpart, Scaling2d) has a lot in common with geom::AffineTransform, and ideally they should share code and be highly interoperable. Doing that well would require a larger-scale rethink of geom, however, and at present we don't actually have a use case for that interoperability, so it's something we should keep in mind for the future, not a high priority for the present.
Exception Safety
All operations on Scaling1d are noexcept.
See also
makeUnitRangeScaling1d

Definition at line 46 of file Scaling1d.h.

Constructor & Destructor Documentation

◆ Scaling1d() [1/3]

lsst::geom::polynomials::Scaling1d::Scaling1d ( double scale,
double shift )
inlinenoexcept

Construct from the given multiplicative scale and additive shift.

Definition at line 50 of file Scaling1d.h.

◆ Scaling1d() [2/3]

lsst::geom::polynomials::Scaling1d::Scaling1d ( Scaling1d const & )
defaultnoexcept

Default copy constructor.

◆ Scaling1d() [3/3]

lsst::geom::polynomials::Scaling1d::Scaling1d ( Scaling1d && )
defaultnoexcept

Default move constructor.

Member Function Documentation

◆ applyForward()

double lsst::geom::polynomials::Scaling1d::applyForward ( double x) const
inlinenoexcept

Apply the transform in the forward direction.

Result is defined to be (x + getShift()) * getScale().

Definition at line 72 of file Scaling1d.h.

◆ applyInverse()

double lsst::geom::polynomials::Scaling1d::applyInverse ( double y) const
inlinenoexcept

Apply the inverse of the forward transform;.

Definition at line 79 of file Scaling1d.h.

◆ getScale()

double lsst::geom::polynomials::Scaling1d::getScale ( ) const
inlinenoexcept

Return the multiplicative scaling.

Definition at line 84 of file Scaling1d.h.

◆ getShift()

double lsst::geom::polynomials::Scaling1d::getShift ( ) const
inlinenoexcept

Return the additive shift.

Definition at line 87 of file Scaling1d.h.

◆ inverted()

Scaling1d lsst::geom::polynomials::Scaling1d::inverted ( ) const
inlinenoexcept

Invert the transform.

If r = t.inverted(), then r.applyForward(x) is equivalent to t.applyInverse(x) and r.applyInverse(y) is equivalent to t.applyForward(y).

Definition at line 96 of file Scaling1d.h.

◆ operator=() [1/2]

Scaling1d & lsst::geom::polynomials::Scaling1d::operator= ( Scaling1d && )
defaultnoexcept

Default move assignment.

◆ operator=() [2/2]

Scaling1d & lsst::geom::polynomials::Scaling1d::operator= ( Scaling1d const & )
defaultnoexcept

Default copy assignment.

◆ then()

Scaling1d lsst::geom::polynomials::Scaling1d::then ( Scaling1d const & second) const
inlinenoexcept

Compose two transforms.

If r = a.then(b), then r.applyForward(x) is equivalent to b.applyForward(a.applyForward(x)) and r.applyInverse(y) is equivalent to a.applyInverse(b.applyInverse(y)).

Definition at line 107 of file Scaling1d.h.


The documentation for this class was generated from the following file: