lsst.pipe.tasks g2df3ba6d1c+37fc3c099b
Loading...
Searching...
No Matches
Classes | Functions | Variables
lsst.pipe.tasks.assembleChi2Coadd Namespace Reference

Classes

class  AssembleChi2CoaddConnections
 

Functions

int calculateKernelSize (float sigma, float nSigmaForKernel=7)
 
afwImage.Image convolveImage (afwImage.Image image, Psf psf)
 

Variables

 log = logging.getLogger(__name__)
 

Function Documentation

◆ calculateKernelSize()

int lsst.pipe.tasks.assembleChi2Coadd.calculateKernelSize ( float  sigma,
float   nSigmaForKernel = 7 
)
Calculate the size of the smoothing kernel.

Parameters
----------
sigma:
    Gaussian sigma of smoothing kernel.
nSigmaForKernel:
    The multiple of `sigma` to use to set the size of the kernel.
    Note that that is the full width of the kernel bounding box
    (so a value of 7 means 3.5 sigma on either side of center).
    The value will be rounded up to the nearest odd integer.

Returns
-------
size:
    Size of the smoothing kernel.

Definition at line 41 of file assembleChi2Coadd.py.

◆ convolveImage()

afwImage.Image lsst.pipe.tasks.assembleChi2Coadd.convolveImage ( afwImage.Image  image,
Psf  psf 
)
Convolve an image with a psf

This methodm and the docstring, is based off the method in
`~lsst.meas.algorithms.detection.SourceDetectionTask`.

We convolve the image with a Gaussian approximation to the PSF,
because this is separable and therefore fast. It's technically a
correlation rather than a convolution, but since we use a symmetric
Gaussian there's no difference.

Parameters
----------
image:
    The image to convovle.
psf:
    The PSF to convolve the `image` with.

Returns
-------
convolved:
    The result of convolving `image` with the `psf`.

Definition at line 62 of file assembleChi2Coadd.py.

Variable Documentation

◆ log

lsst.pipe.tasks.assembleChi2Coadd.log = logging.getLogger(__name__)

Definition at line 38 of file assembleChi2Coadd.py.