Coverage for tests/test_deferredCharge.py: 36%

33 statements  

« prev     ^ index     » next       coverage.py v7.2.5, created at 2023-05-04 05:49 -0700

1# 

2# LSST Data Management System 

3# 

4# Copyright 2008-2017 AURA/LSST. 

5# 

6# This product includes software developed by the 

7# LSST Project (http://www.lsst.org/). 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the LSST License Statement and 

20# the GNU General Public License along with this program. If not, 

21# see <https://www.lsstcorp.org/LegalNotices/>. 

22# 

23"""Test cases for lsst.cp.pipe.deferredCharge.""" 

24 

25import unittest 

26 

27import lsst.utils 

28import lsst.utils.tests 

29 

30import lsst.cp.pipe as cpPipe 

31from lsst.ip.isr import IsrMock 

32 

33 

34class CpCtiSolveTaskTestCase(lsst.utils.tests.TestCase): 

35 """A test case for the deferred charge/CTI solve task.""" 

36 

37 def setUp(self): 

38 self.camera = IsrMock().getCamera() 

39 

40 overscanMeansA = [7.18039751e-01, 4.56550479e-01, 4.14261669e-01, 2.88099229e-01, -2.34310962e-02, 

41 -4.59854975e-02, -1.14491098e-02, 5.19846082e-02, 2.05635265e-01, 1.25147207e-02, 

42 9.00449380e-02, -2.39106059e-01, -1.52413145e-01, 4.63459678e-02, 1.85195580e-01, 

43 -1.58051759e-01, -8.76842241e-04, -5.09192124e-02, 2.58496821e-01, 2.54267782e-01, 

44 -1.37611866e-01, 3.35322201e-01, 1.04846083e-01, -2.16551736e-01, -8.82746354e-02, 

45 -1.00256450e-01, 2.73297966e-01, -4.52805981e-02, 3.40960979e-01, 7.80628920e-02, 

46 -2.90697180e-02, -6.99492991e-02, -1.06599867e-01, 6.89002723e-02, 1.46290688e-02, 

47 1.19647197e-01, -1.54527843e-01, 9.35689881e-02, -1.06599934e-01, -2.13166289e-02, 

48 9.35688764e-02, -1.19286761e-01, 1.18098985e-02, -3.69616691e-03, -6.14914447e-02, 

49 -5.81059000e-03, 9.42736641e-02, 3.92978266e-02, -1.55937240e-01, 3.76202404e-01, 

50 -1.13648064e-01, 1.71803936e-01, 6.17138995e-03, 8.22918862e-02, -2.84214199e-01, 

51 -2.99097435e-03, -1.31973490e-01, -2.84214795e-01, -2.99140741e-03, -3.76546055e-01, 

52 5.97376414e-02, -1.91883057e-01, -1.34087920e-01, -3.23684871e-01] 

53 overscanMeansB = [1.50365152e+01, 4.43178511e+00, 2.66550946e+00, 1.67382801e+00, 1.10997069e+00, 

54 8.89361799e-01, 4.66469795e-01, 6.10956728e-01, 6.67343795e-01, 5.22854805e-01, 

55 -1.15006611e-01, 2.67710119e-01, 2.05686077e-01, 1.84541523e-01, 8.65717679e-02, 

56 5.51738311e-03, 2.35288814e-01, 3.45944524e-01, 7.81139359e-02, 1.52119964e-01, 

57 2.02162191e-01, 3.44150960e-02, -2.86277920e-01, 1.43662184e-01, 3.21276844e-01, 

58 -6.21452965e-02, 8.58670697e-02, -1.63320359e-02, -1.07958235e-01, -1.60820082e-01, 

59 -2.19705645e-02, -1.55181482e-01, -2.39055425e-01, -2.75705636e-01, 6.33126274e-02, 

60 -5.50971478e-02, -2.42579415e-01, -9.87957790e-02, 1.08421087e-01, -1.12892322e-01, 

61 1.89090632e-02, -1.53086300e-03, -2.18615308e-01, -2.19320312e-01, 9.22102109e-02, 

62 -4.87535410e-02, -1.81964979e-01, -4.17055413e-02, -4.24422681e-01, -1.96061105e-01, 

63 -1.35127297e-02, -1.77031055e-01, -2.30597332e-01, -4.01868790e-01, -4.18784261e-01, 

64 -3.75085384e-01, -3.49007100e-01, -1.77735761e-01, -7.41272718e-02, -1.92537069e-01, 

65 2.46565759e-01, -3.44777972e-01, -2.85573214e-01, -2.34121397e-01] 

66 overscanMeansC = [0.212578110, 0.107817403, -0.122200218, -0.0089812368, -0.067990060, 0.040077099, 

67 -0.021402006, 0.090923088, -0.099587158, 0.274797124, -0.016930788, 0.045007070, 

68 -0.00379911056, -0.16088248, 0.055911896, 0.0601755001, -0.046872945, 0.210018355, 

69 0.081641635, -0.046147249, -0.0059020276, 0.108368757, -0.033966731, -0.0058644798, 

70 -0.075746922, -0.203826510, 0.12620401, -0.0156685544, -0.09631182, 0.089754454, 

71 0.03789926, 0.0304515115, -0.082173715, -0.061332140, -0.24894494, -0.155137551, 

72 -0.073825312, 0.24538413, -0.069597074, 0.192338801, -0.0539746876, -0.184556000, 

73 -0.173069382, -0.209975778, 0.086679191, 0.016299034, -0.0094125706, -0.100099911, 

74 0.061981365, 0.086250364, 0.209128404, -0.0067993622, 0.171072270, -0.29266333, 

75 0.075172274, -0.29375612, -0.13377650, 0.0125964781, -0.124991264, 0.226516831, 

76 0.128244484, -0.05019844, -0.149249925, -0.1557398] 

77 overscanMeansD = [4.0867248, 1.43194193, 0.95319573, 0.43219185, 0.53112239, 0.28648, 0.323903486, 

78 0.27622156, 0.26031138, 0.144442975, 0.0149878587, 0.062969929, 0.018541051, 

79 -0.237687056, 0.22804558, 0.0600504708, 0.140250022, -0.137477808, 0.119911710, 

80 0.03770870, -0.20021377, 0.187175400, 0.0168790129, -0.110724371, 0.099311580, 

81 0.0079969534, -0.157593577, -0.178876067, -0.214948580, -0.11354382, 0.148154530, 

82 -0.056012520, 0.11851939, 0.067902033, 0.18970736, -0.181487703, -0.0101017127, 

83 0.100998570, -0.0309096733, -0.034450136, -0.066357072, -0.058662959, 0.146185921, 

84 -0.218474021, -0.173691633, 0.055349625, -0.178158524, -0.012917378, -0.166576555, 

85 -0.063862754, 0.113169933, -0.33518338, -0.074239500, 0.22262230, -0.066653975, 

86 -0.200271016, -0.013275277, 0.100596499, -0.092528954, 0.0339541714, 0.113119135, 

87 -0.150720824, 0.038237873, 0.17603852613429813] 

88 

89 self.inputMeasurements = [ 

90 {'CTI': {'C:0,0': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

91 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

92 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

93 'C:0,1': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

94 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

95 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

96 'C:0,2': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

97 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

98 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

99 'C:0,3': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

100 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

101 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

102 'C:1,0': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

103 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

104 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

105 'C:1,1': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

106 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

107 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

108 'C:1,2': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

109 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

110 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

111 'C:1,3': {'FIRST_MEAN': 117.810165, 'LAST_MEAN': 1.09791130e+02, 

112 'IMAGE_MEAN': 117.810165, 'OVERSCAN_VALUES': overscanMeansA, 

113 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}}, 

114 {'CTI': {'C:0,0': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

115 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

116 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

117 'C:0,1': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

118 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

119 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

120 'C:0,2': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

121 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

122 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

123 'C:0,3': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

124 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

125 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

126 'C:1,0': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

127 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

128 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

129 'C:1,1': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

130 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

131 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

132 'C:1,2': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

133 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

134 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

135 'C:1,3': {'FIRST_MEAN': 36562.082, 'LAST_MEAN': 3.45901172e+04, 

136 'IMAGE_MEAN': 36562.082, 'OVERSCAN_VALUES': overscanMeansB, 

137 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}}, 

138 

139 {'CTI': {'C:0,0': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

140 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

141 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

142 'C:0,1': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

143 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

144 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

145 'C:0,2': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

146 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

147 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

148 'C:0,3': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

149 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

150 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

151 'C:1,0': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

152 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

153 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

154 'C:1,1': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

155 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

156 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

157 'C:1,2': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

158 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

159 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

160 'C:1,3': {'FIRST_MEAN': 994.811, 'LAST_MEAN': 936.415, 

161 'IMAGE_MEAN': 994.811, 'OVERSCAN_VALUES': overscanMeansC, 

162 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}}, 

163 {'CTI': {'C:0,0': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

164 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

165 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

166 'C:0,1': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

167 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

168 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

169 'C:0,2': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

170 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

171 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

172 'C:0,3': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

173 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

174 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

175 'C:1,0': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

176 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

177 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

178 'C:1,1': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

179 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

180 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

181 'C:1,2': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

182 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

183 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}, 

184 'C:1,3': {'FIRST_MEAN': 12215.778, 'LAST_MEAN': 11536.875, 

185 'IMAGE_MEAN': 12215.778, 'OVERSCAN_VALUES': overscanMeansD, 

186 'OVERSCAN_COLUMNS': [x for x in range(0, 64)]}}}] 

187 self.inputDims = [{'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101200433}, 

188 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101300154}, 

189 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101300004}, 

190 {'detector': 20, 'instrument': 'IsrMock', 'exposure': 2019101200333}] 

191 

192 self.task = cpPipe.CpCtiSolveTask() 

193 

194 def test_task(self): 

195 """A test for the main CpCtiSolveTask. 

196 

197 This should excercise most of the new code. 

198 """ 

199 results = self.task.run(self.inputMeasurements, self.camera, self.inputDims) 

200 

201 calib = results.outputCalib 

202 # Check that the result matches expectation. 

203 self.assertAlmostEqual(calib.globalCti['C:0,0'], 1.0e-7, 4) 

204 self.assertAlmostEqual(calib.driftScale['C:0,0'], 1.8105e-4, 4) 

205 self.assertAlmostEqual(calib.decayTime['C:0,0'], 3.08095, 4) 

206 

207 # Check that all amps are equal. 

208 for ampName in calib.globalCti.keys(): 

209 self.assertEqual(calib.globalCti['C:0,0'], calib.globalCti[ampName]) 

210 self.assertEqual(calib.driftScale['C:0,0'], calib.driftScale[ampName]) 

211 self.assertEqual(calib.decayTime['C:0,0'], calib.decayTime[ampName]) 

212 

213 

214class TestMemory(lsst.utils.tests.MemoryTestCase): 

215 pass 

216 

217 

218def setup_module(module): 

219 lsst.utils.tests.init() 

220 

221 

222if __name__ == "__main__": 222 ↛ 223line 222 didn't jump to line 223, because the condition on line 222 was never true

223 lsst.utils.tests.init() 

224 unittest.main()