Coverage for python/lsst/analysis/drp/plotUtils.py: 8%
183 statements
« prev ^ index » next coverage.py v7.2.5, created at 2023-05-23 04:01 -0700
« prev ^ index » next coverage.py v7.2.5, created at 2023-05-23 04:01 -0700
1# This file is part of analysis_drp.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
22import numpy as np
23import matplotlib.pyplot as plt
24import scipy.odr as scipyODR
25import matplotlib
26from matplotlib import colors
27from typing import List, Tuple
29from lsst.geom import Box2D, SpherePoint, degrees
31null_formatter = matplotlib.ticker.NullFormatter()
34def parsePlotInfo(dataId, runName, tableName, bands, plotName, SN, SNFlux):
35 """Parse plot info from the dataId
37 Parameters
38 ----------
39 dataId : `lsst.daf.butler.core.dimensions.`
40 `_coordinate._ExpandedTupleDataCoordinate`
41 runName : `str`
43 Returns
44 -------
45 plotInfo : `dict`
46 """
47 plotInfo = {"run": runName, "tractTableType": tableName, "plotName": plotName, "SN": SN, "SNFlux": SNFlux}
49 for dataInfo in dataId:
50 plotInfo[dataInfo.name] = dataId[dataInfo.name]
52 bandStr = ""
53 for band in bands:
54 bandStr += (", " + band)
55 plotInfo["bands"] = bandStr[2:]
57 if "tract" not in plotInfo.keys():
58 plotInfo["tract"] = "N/A"
59 if "visit" not in plotInfo.keys():
60 plotInfo["visit"] = "N/A"
62 return plotInfo
65def generateSummaryStats(cat, colName, skymap, plotInfo):
66 """Generate a summary statistic in each patch or detector
68 Parameters
69 ----------
70 cat : `pandas.core.frame.DataFrame`
71 colName : `str`
72 skymap : `lsst.skymap.ringsSkyMap.RingsSkyMap`
73 plotInfo : `dict`
75 Returns
76 -------
77 patchInfoDict : `dict`
78 """
80 # TODO: what is the more generic type of skymap?
81 tractInfo = skymap.generateTract(plotInfo["tract"])
82 tractWcs = tractInfo.getWcs()
84 if "sourceType" in cat.columns:
85 cat = cat.loc[cat["sourceType"] != 0]
87 # For now also convert the gen 2 patchIds to gen 3
89 patchInfoDict = {}
90 maxPatchNum = tractInfo.num_patches.x*tractInfo.num_patches.y
91 patches = np.arange(0, maxPatchNum, 1)
92 for patch in patches:
93 if patch is None:
94 continue
95 # Once the objectTable_tract catalogues are using gen 3 patches
96 # this will go away
97 onPatch = (cat["patch"] == patch)
98 stat = np.nanmedian(cat[colName].values[onPatch])
99 try:
100 patchTuple = (int(patch.split(",")[0]), int(patch.split(",")[-1]))
101 patchInfo = tractInfo.getPatchInfo(patchTuple)
102 gen3PatchId = tractInfo.getSequentialPatchIndex(patchInfo)
103 except AttributeError:
104 # For native gen 3 tables the patches don't need converting
105 # When we are no longer looking at the gen 2 -> gen 3
106 # converted repos we can tidy this up
107 gen3PatchId = patch
108 patchInfo = tractInfo.getPatchInfo(patch)
110 corners = Box2D(patchInfo.getInnerBBox()).getCorners()
111 skyCoords = tractWcs.pixelToSky(corners)
113 patchInfoDict[gen3PatchId] = (skyCoords, stat)
115 tractCorners = Box2D(tractInfo.getBBox()).getCorners()
116 skyCoords = tractWcs.pixelToSky(tractCorners)
117 patchInfoDict["tract"] = (skyCoords, np.nan)
119 return patchInfoDict
122def generateSummaryStatsVisit(cat, colName, visitSummaryTable, plotInfo):
123 """Generate a summary statistic in each patch or detector
125 Parameters
126 ----------
127 cat : `pandas.core.frame.DataFrame`
128 colName : `str`
129 visitSummaryTable : `pandas.core.frame.DataFrame`
130 plotInfo : `dict`
132 Returns
133 -------
134 visitInfoDict : `dict`
135 """
137 visitInfoDict = {}
138 for ccd in cat.detector.unique():
139 if ccd is None:
140 continue
141 onCcd = (cat["detector"] == ccd)
142 stat = np.nanmedian(cat[colName].values[onCcd])
144 sumRow = (visitSummaryTable["id"] == ccd)
145 corners = zip(visitSummaryTable["raCorners"][sumRow][0], visitSummaryTable["decCorners"][sumRow][0])
146 cornersOut = []
147 for (ra, dec) in corners:
148 corner = SpherePoint(ra, dec, units=degrees)
149 cornersOut.append(corner)
151 visitInfoDict[ccd] = (cornersOut, stat)
153 return visitInfoDict
156# Inspired by matplotlib.testing.remove_ticks_and_titles
157def get_and_remove_axis_text(ax) -> Tuple[List[str], List[np.ndarray]]:
158 """Remove text from an Axis and its children and return with line points.
160 Parameters
161 ----------
162 ax : `plt.Axis`
163 A matplotlib figure axis.
165 Returns
166 -------
167 texts : `List[str]`
168 A list of all text strings (title and axis/legend/tick labels).
169 line_xys : `List[numpy.ndarray]`
170 A list of all line ``_xy`` attributes (arrays of shape ``(N, 2)``).
171 """
172 line_xys = [line._xy for line in ax.lines]
173 texts = [text.get_text() for text in (ax.title, ax.xaxis.label, ax.yaxis.label)]
174 ax.set_title("")
175 ax.set_xlabel("")
176 ax.set_ylabel("")
178 try:
179 texts_legend = ax.get_legend().texts
180 texts.extend(text.get_text() for text in texts_legend)
181 for text in texts_legend:
182 text.set_alpha(0)
183 except AttributeError:
184 pass
186 for idx in range(len(ax.texts)):
187 texts.append(ax.texts[idx].get_text())
188 ax.texts[idx].set_text('')
190 ax.xaxis.set_major_formatter(null_formatter)
191 ax.xaxis.set_minor_formatter(null_formatter)
192 ax.yaxis.set_major_formatter(null_formatter)
193 ax.yaxis.set_minor_formatter(null_formatter)
194 try:
195 ax.zaxis.set_major_formatter(null_formatter)
196 ax.zaxis.set_minor_formatter(null_formatter)
197 except AttributeError:
198 pass
199 for child in ax.child_axes:
200 texts_child, lines_child = get_and_remove_axis_text(child)
201 texts.extend(texts_child)
203 return texts, line_xys
206def get_and_remove_figure_text(figure: plt.Figure):
207 """Remove text from a Figure and its Axes and return with line points.
209 Parameters
210 ----------
211 figure : `matplotlib.pyplot.Figure`
212 A matplotlib figure.
214 Returns
215 -------
216 texts : `List[str]`
217 A list of all text strings (title and axis/legend/tick labels).
218 line_xys : `List[numpy.ndarray]`, (N, 2)
219 A list of all line ``_xy`` attributes (arrays of shape ``(N, 2)``).
220 """
221 texts = [str(figure._suptitle)]
222 lines = []
223 figure.suptitle("")
225 texts.extend(text.get_text() for text in figure.texts)
226 figure.texts = []
228 for ax in figure.get_axes():
229 texts_ax, lines_ax = get_and_remove_axis_text(ax)
230 texts.extend(texts_ax)
231 lines.extend(lines_ax)
233 return texts, lines
236def addPlotInfo(fig, plotInfo):
237 """Add useful information to the plot
239 Parameters
240 ----------
241 fig : `matplotlib.figure.Figure`
242 plotInfo : `dict`
244 Returns
245 -------
246 fig : `matplotlib.figure.Figure`
247 """
249 # TO DO: figure out how to get this information
250 photocalibDataset = "None"
251 astroDataset = "None"
253 fig.text(0.01, 0.99, plotInfo["plotName"], fontsize=8, transform=fig.transFigure, ha="left", va="top")
255 run = plotInfo["run"]
256 datasetsUsed = f"\nPhotoCalib: {photocalibDataset}, Astrometry: {astroDataset}"
257 tableType = f"\nTable: {plotInfo['tractTableType']}"
259 dataIdText = ""
260 if str(plotInfo["tract"]) != "N/A":
261 dataIdText += f", Tract: {plotInfo['tract']}"
262 if str(plotInfo["visit"]) != "N/A":
263 dataIdText += f", Visit: {plotInfo['visit']}"
265 bandsText = f", Bands: {''.join(plotInfo['bands'].split(' '))}"
266 if isinstance(plotInfo["SN"], str):
267 SNText = f", S/N: {plotInfo['SN']}"
268 else:
269 if np.abs(plotInfo["SN"]) > 1e4:
270 SNText = f", S/N > {plotInfo['SN']:0.1g} ({plotInfo['SNFlux']})"
271 else:
272 SNText = f", S/N > {plotInfo['SN']:0.1f} ({plotInfo['SNFlux']})"
273 infoText = f"\n{run}{datasetsUsed}{tableType}{dataIdText}{bandsText}{SNText}"
274 fig.text(0.01, 0.98, infoText, fontsize=7, transform=fig.transFigure, alpha=0.6, ha="left", va="top")
276 return fig
279def stellarLocusFit(xs, ys, paramDict):
280 """Make a fit to the stellar locus
282 Parameters
283 ----------
284 xs : `numpy.ndarray` [`float`]
285 The color on the xaxis.
286 ys : `numpy.ndarray` [`float`]
287 The color on the yaxis.
288 paramDict : `lsst.pex.config.dictField.Dict`
289 A dictionary of parameters for line fitting
290 xMin : `float`
291 The minimum x edge of the box to use for initial fitting.
292 xMax : `float`
293 The maximum x edge of the box to use for initial fitting.
294 yMin : `float`
295 The minimum y edge of the box to use for initial fitting.
296 yMax : `float`
297 The maximum y edge of the box to use for initial fitting.
298 mHW : `float`
299 The hardwired gradient for the fit.
300 bHW : `float`
301 The hardwired intercept of the fit.
303 Returns
304 -------
305 paramsOut : `dict`
306 A dictionary of the calculated fit parameters.
307 mODR0 : `float`
308 The gradient calculated by the initial ODR fit.
309 bODR0 : `float`
310 The intercept calculated by the initial ODR fit.
311 yBoxMin : `float`
312 The y value of the fitted line at xMin.
313 yBoxMax : `float`
314 The y value of the fitted line at xMax.
315 bPerpMin : `float`
316 The intercept of the perpendicular line that goes through xMin.
317 bPerpMax : `float`
318 The intercept of the perpendicular line that goes through xMax.
319 mODR : `float`
320 The gradient from the second (and final) round of fitting.
321 bODR : `float`
322 The intercept from the second (and final) round of fitting.
323 mPerp : `float`
324 The gradient of the line perpendicular to the line from the
325 second fit.
326 fitPoints : `numpy.ndarray` [`bool`]
327 A boolean array indicating which points were usee in the final fit.
329 Notes
330 -----
331 The code does two rounds of fitting, the first is initiated using the
332 hardwired values given in the `paramDict` parameter and is done using
333 an Orthogonal Distance Regression fit to the points defined by the
334 box of xMin, xMax, yMin and yMax. Once this fitting has been done a
335 perpendicular bisector is calculated at either end of the line and
336 only points that fall within these lines are used to recalculate the fit.
337 """
339 # Initial subselection of points to use for the fit
340 fitPoints = ((xs > paramDict["xMin"]) & (xs < paramDict["xMax"])
341 & (ys > paramDict["yMin"]) & (ys < paramDict["yMax"]))
343 linear = scipyODR.polynomial(1)
345 data = scipyODR.Data(xs[fitPoints], ys[fitPoints])
346 odr = scipyODR.ODR(data, linear, beta0=[paramDict["bHW"], paramDict["mHW"]])
347 params = odr.run()
348 mODR0 = float(params.beta[1])
349 bODR0 = float(params.beta[0])
351 paramsOut = {"mODR0": mODR0, "bODR0": bODR0}
353 # Having found the initial fit calculate perpendicular ends
354 mPerp0 = -1.0/mODR0
355 # When the gradient is really steep we need to use
356 # the y limits of the box rather than the x ones.
358 if np.abs(mODR0) > 1:
359 yBoxMin = paramDict["yMin"]
360 xBoxMin = (yBoxMin - bODR0)/mODR0
361 yBoxMax = paramDict["yMax"]
362 xBoxMax = (yBoxMax - bODR0)/mODR0
363 else:
364 yBoxMin = mODR0*paramDict["xMin"] + bODR0
365 xBoxMin = paramDict["xMin"]
366 yBoxMax = mODR0*paramDict["xMax"] + bODR0
367 xBoxMax = paramDict["xMax"]
369 bPerpMin = yBoxMin - mPerp0*xBoxMin
371 paramsOut["yBoxMin"] = yBoxMin
372 paramsOut["bPerpMin"] = bPerpMin
374 bPerpMax = yBoxMax - mPerp0*xBoxMax
376 paramsOut["yBoxMax"] = yBoxMax
377 paramsOut["bPerpMax"] = bPerpMax
379 # Use these perpendicular lines to chose the data and refit
380 fitPoints = ((ys > mPerp0*xs + bPerpMin) & (ys < mPerp0*xs + bPerpMax))
381 data = scipyODR.Data(xs[fitPoints], ys[fitPoints])
382 odr = scipyODR.ODR(data, linear, beta0=[bODR0, mODR0])
383 params = odr.run()
385 paramsOut["mODR"] = float(params.beta[1])
386 paramsOut["bODR"] = float(params.beta[0])
388 paramsOut["mPerp"] = -1.0/paramsOut["mODR"]
389 paramsOut["fitPoints"] = fitPoints
391 return paramsOut
394def perpDistance(p1, p2, points):
395 """Calculate the perpendicular distance to a line from a point
397 Parameters
398 ----------
399 p1 : `numpy.ndarray`
400 A point on the line
401 p2 : `numpy.ndarray`
402 Another point on the line
403 points : `zip`
404 The points to calculate the distance to
406 Returns
407 -------
408 dists : `list`
409 The distances from the line to the points. Uses the cross
410 product to work this out.
411 """
412 dists = []
413 for point in points:
414 point = np.array(point)
415 distToLine = np.cross(p2 - p1, point - p1)/np.linalg.norm(p2 - p1)
416 dists.append(distToLine)
418 return dists
421def mkColormap(colorNames):
422 """Make a colormap from the list of color names.
424 Parameters
425 ----------
426 colorNames : `list`
427 A list of strings that correspond to matplotlib
428 named colors.
430 Returns
431 -------
432 cmap : `matplotlib.colors.LinearSegmentedColormap`
433 """
435 nums = np.linspace(0, 1, len(colorNames))
436 blues = []
437 greens = []
438 reds = []
439 for (num, color) in zip(nums, colorNames):
440 r, g, b = colors.colorConverter.to_rgb(color)
441 blues.append((num, b, b))
442 greens.append((num, g, g))
443 reds.append((num, r, r))
445 colorDict = {"blue": blues, "red": reds, "green": greens}
446 cmap = colors.LinearSegmentedColormap("newCmap", colorDict)
447 return cmap
450def extremaSort(xs):
451 """Return the ids of the points reordered so that those
452 furthest from the median, in absolute terms, are last.
454 Parameters
455 ----------
456 xs : `np.array`
457 An array of the values to sort
459 Returns
460 -------
461 ids : `np.array`
462 """
464 med = np.median(xs)
465 dists = np.abs(xs - med)
466 ids = np.argsort(dists)
467 return ids