Coverage for python/lsst/analysis/tools/analysisPlots/photometricRepeatabilityPlots.py: 39%

18 statements  

« prev     ^ index     » next       coverage.py v6.5.0, created at 2023-04-07 02:26 -0700

1# This file is part of analysis_tools. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (https://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <https://www.gnu.org/licenses/>. 

21from __future__ import annotations 

22 

23__all__ = ("StellarPhotometricRepeatabilityHistPlot",) 

24 

25from ..actions.plot.histPlot import HistPanel, HistPlot, HistStatsPanel 

26from ..analysisParts.photometricRepeatability import StellarPhotometricRepeatabilityMixin 

27from ..interfaces import AnalysisPlot 

28 

29 

30class StellarPhotometricRepeatabilityHistPlot(AnalysisPlot, StellarPhotometricRepeatabilityMixin): 

31 """Compute photometric repeatability from multiple measurements of a set of 

32 stars. First, a set of per-source quality criteria are applied. Second, 

33 the individual source measurements are grouped together by object index 

34 and per-group quantities are computed (e.g., a representative S/N for the 

35 group based on the median of associated per-source measurements). Third, 

36 additional per-group criteria are applied. Fourth, summary statistics are 

37 computed for the filtered groups. 

38 """ 

39 

40 def setDefaults(self): 

41 super().setDefaults() 

42 

43 self.produce = HistPlot() 

44 

45 self.produce.panels["panel_rms"] = HistPanel() 

46 

47 self.produce.panels["panel_rms"].statsPanel = HistStatsPanel() 

48 self.produce.panels["panel_rms"].statsPanel.statsLabels = ["N", "PA1", "PF1 %"] 

49 self.produce.panels["panel_rms"].statsPanel.stat1 = ["photRepeatNsources"] 

50 self.produce.panels["panel_rms"].statsPanel.stat2 = ["photRepeatStdev"] 

51 self.produce.panels["panel_rms"].statsPanel.stat3 = ["photRepeatOutlier"] 

52 

53 self.produce.panels["panel_rms"].referenceValue = self.PA2Value 

54 self.produce.panels["panel_rms"].label = "rms (mmag)" 

55 self.produce.panels["panel_rms"].hists = dict(perGroupStdevFiltered="Filtered per group rms")