Coverage for python/lsst/daf/butler/registry/bridge/ephemeral.py: 32%
36 statements
« prev ^ index » next coverage.py v6.4.1, created at 2022-06-23 02:27 -0700
« prev ^ index » next coverage.py v6.4.1, created at 2022-06-23 02:27 -0700
1# This file is part of daf_butler.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21from __future__ import annotations
23__all__ = ("EphemeralDatastoreRegistryBridge",)
25from contextlib import contextmanager
26from typing import TYPE_CHECKING, Iterable, Iterator, Optional, Set, Tuple, Type
28from ...core import DatasetId
29from ..interfaces import DatasetIdRef, DatastoreRegistryBridge, FakeDatasetRef, OpaqueTableStorage
31if TYPE_CHECKING: 31 ↛ 32line 31 didn't jump to line 32, because the condition on line 31 was never true
32 from ...core import StoredDatastoreItemInfo
35class EphemeralDatastoreRegistryBridge(DatastoreRegistryBridge):
36 """An implementation of `DatastoreRegistryBridge` for ephemeral datastores
37 - those whose artifacts never outlive the current process.
39 Parameters
40 ----------
41 datastoreName : `str`
42 Name of the `Datastore` as it should appear in `Registry` tables
43 referencing it.
45 Notes
46 -----
47 The current implementation just uses a Python set to remember the dataset
48 IDs associated with the datastore. This will probably need to be converted
49 to use in-database temporary tables instead in the future to support
50 "in-datastore" constraints in `Registry.queryDatasets`.
51 """
53 def __init__(self, datastoreName: str):
54 super().__init__(datastoreName)
55 self._datasetIds: Set[DatasetId] = set()
56 self._trashedIds: Set[DatasetId] = set()
58 def insert(self, refs: Iterable[DatasetIdRef]) -> None:
59 # Docstring inherited from DatastoreRegistryBridge
60 self._datasetIds.update(ref.getCheckedId() for ref in refs)
62 def forget(self, refs: Iterable[DatasetIdRef]) -> None:
63 self._datasetIds.difference_update(ref.id for ref in refs)
65 def moveToTrash(self, refs: Iterable[DatasetIdRef]) -> None:
66 # Docstring inherited from DatastoreRegistryBridge
67 self._trashedIds.update(ref.getCheckedId() for ref in refs)
69 def check(self, refs: Iterable[DatasetIdRef]) -> Iterable[DatasetIdRef]:
70 # Docstring inherited from DatastoreRegistryBridge
71 yield from (ref for ref in refs if ref in self)
73 def __contains__(self, ref: DatasetIdRef) -> bool:
74 return ref.getCheckedId() in self._datasetIds and ref.getCheckedId() not in self._trashedIds
76 @contextmanager
77 def emptyTrash(
78 self,
79 records_table: Optional[OpaqueTableStorage] = None,
80 record_class: Optional[Type[StoredDatastoreItemInfo]] = None,
81 record_column: Optional[str] = None,
82 ) -> Iterator[
83 Tuple[Iterable[Tuple[DatasetIdRef, Optional[StoredDatastoreItemInfo]]], Optional[Set[str]]]
84 ]:
85 # Docstring inherited from DatastoreRegistryBridge
86 matches: Iterable[Tuple[FakeDatasetRef, Optional[StoredDatastoreItemInfo]]] = ()
87 if isinstance(records_table, OpaqueTableStorage):
88 if record_class is None:
89 raise ValueError("Record class must be provided if records table is given.")
90 matches = (
91 (FakeDatasetRef(id), record_class.from_record(record))
92 for id in self._trashedIds
93 for record in records_table.fetch(dataset_id=id)
94 )
95 else:
96 matches = ((FakeDatasetRef(id), None) for id in self._trashedIds)
98 # Indicate to caller that we do not know about artifacts that
99 # should be retained.
100 yield ((matches, None))
102 if isinstance(records_table, OpaqueTableStorage):
103 # Remove the records entries
104 records_table.delete(["dataset_id"], *[{"dataset_id": id} for id in self._trashedIds])
106 # Empty the trash table
107 self._datasetIds.difference_update(self._trashedIds)
108 self._trashedIds = set()