Coverage for python/lsst/daf/butler/registry/tests/_registry.py: 5%
Shortcuts on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of daf_butler.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21from __future__ import annotations
23__all__ = ["RegistryTests"]
25import itertools
26import logging
27import os
28import re
29import unittest
30import uuid
31from abc import ABC, abstractmethod
32from collections import defaultdict, namedtuple
33from datetime import datetime, timedelta
34from typing import TYPE_CHECKING, Iterator, Optional, Type, Union
36import astropy.time
37import sqlalchemy
39try:
40 import numpy as np
41except ImportError:
42 np = None
44import lsst.sphgeom
46from ...core import (
47 DataCoordinate,
48 DataCoordinateSet,
49 DatasetAssociation,
50 DatasetRef,
51 DatasetType,
52 DimensionGraph,
53 NamedValueSet,
54 StorageClass,
55 Timespan,
56 ddl,
57)
58from .._collectionType import CollectionType
59from .._config import RegistryConfig
60from .._exceptions import (
61 ArgumentError,
62 CollectionError,
63 CollectionTypeError,
64 ConflictingDefinitionError,
65 DataIdValueError,
66 InconsistentDataIdError,
67 MissingCollectionError,
68 OrphanedRecordError,
69)
70from ..interfaces import ButlerAttributeExistsError, DatasetIdGenEnum
71from ..summaries import CollectionSummary
73if TYPE_CHECKING: 73 ↛ 74line 73 didn't jump to line 74, because the condition on line 73 was never true
74 from .._registry import Registry
77class RegistryTests(ABC):
78 """Generic tests for the `Registry` class that can be subclassed to
79 generate tests for different configurations.
80 """
82 collectionsManager: Optional[str] = None
83 """Name of the collections manager class, if subclass provides value for
84 this member then it overrides name specified in default configuration
85 (`str`).
86 """
88 datasetsManager: Optional[str] = None
89 """Name of the datasets manager class, if subclass provides value for
90 this member then it overrides name specified in default configuration
91 (`str`).
92 """
94 @classmethod
95 @abstractmethod
96 def getDataDir(cls) -> str:
97 """Return the root directory containing test data YAML files."""
98 raise NotImplementedError()
100 def makeRegistryConfig(self) -> RegistryConfig:
101 """Create RegistryConfig used to create a registry.
103 This method should be called by a subclass from `makeRegistry`.
104 Returned instance will be pre-configured based on the values of class
105 members, and default-configured for all other parameters. Subclasses
106 that need default configuration should just instantiate
107 `RegistryConfig` directly.
108 """
109 config = RegistryConfig()
110 if self.collectionsManager:
111 config["managers", "collections"] = self.collectionsManager
112 if self.datasetsManager:
113 config["managers", "datasets"] = self.datasetsManager
114 return config
116 @abstractmethod
117 def makeRegistry(self, share_repo_with: Optional[Registry] = None) -> Optional[Registry]:
118 """Return the Registry instance to be tested.
120 Parameters
121 ----------
122 share_repo_with : `Registry`, optional
123 If provided, the new registry should point to the same data
124 repository as this existing registry.
126 Returns
127 -------
128 registry : `Registry`
129 New `Registry` instance, or `None` *only* if `share_repo_with` is
130 not `None` and this test case does not support that argument
131 (e.g. it is impossible with in-memory SQLite DBs).
132 """
133 raise NotImplementedError()
135 def loadData(self, registry: Registry, filename: str):
136 """Load registry test data from ``getDataDir/<filename>``,
137 which should be a YAML import/export file.
138 """
139 from ...transfers import YamlRepoImportBackend
141 with open(os.path.join(self.getDataDir(), filename), "r") as stream:
142 backend = YamlRepoImportBackend(stream, registry)
143 backend.register()
144 backend.load(datastore=None)
146 def checkQueryResults(self, results, expected):
147 """Check that a query results object contains expected values.
149 Parameters
150 ----------
151 results : `DataCoordinateQueryResults` or `DatasetQueryResults`
152 A lazy-evaluation query results object.
153 expected : `list`
154 A list of `DataCoordinate` o `DatasetRef` objects that should be
155 equal to results of the query, aside from ordering.
156 """
157 self.assertCountEqual(list(results), expected)
158 self.assertEqual(results.count(), len(expected))
159 if expected:
160 self.assertTrue(results.any())
161 else:
162 self.assertFalse(results.any())
164 def testOpaque(self):
165 """Tests for `Registry.registerOpaqueTable`,
166 `Registry.insertOpaqueData`, `Registry.fetchOpaqueData`, and
167 `Registry.deleteOpaqueData`.
168 """
169 registry = self.makeRegistry()
170 table = "opaque_table_for_testing"
171 registry.registerOpaqueTable(
172 table,
173 spec=ddl.TableSpec(
174 fields=[
175 ddl.FieldSpec("id", dtype=sqlalchemy.BigInteger, primaryKey=True),
176 ddl.FieldSpec("name", dtype=sqlalchemy.String, length=16, nullable=False),
177 ddl.FieldSpec("count", dtype=sqlalchemy.SmallInteger, nullable=True),
178 ],
179 ),
180 )
181 rows = [
182 {"id": 1, "name": "one", "count": None},
183 {"id": 2, "name": "two", "count": 5},
184 {"id": 3, "name": "three", "count": 6},
185 ]
186 registry.insertOpaqueData(table, *rows)
187 self.assertCountEqual(rows, list(registry.fetchOpaqueData(table)))
188 self.assertEqual(rows[0:1], list(registry.fetchOpaqueData(table, id=1)))
189 self.assertEqual(rows[1:2], list(registry.fetchOpaqueData(table, name="two")))
190 self.assertEqual(rows[0:1], list(registry.fetchOpaqueData(table, id=(1, 3), name=("one", "two"))))
191 self.assertEqual(rows, list(registry.fetchOpaqueData(table, id=(1, 2, 3))))
192 # Test very long IN clause which exceeds sqlite limit on number of
193 # parameters. SQLite says the limit is 32k but it looks like it is
194 # much higher.
195 self.assertEqual(rows, list(registry.fetchOpaqueData(table, id=list(range(300_000)))))
196 # Two IN clauses, each longer than 1k batch size, first with
197 # duplicates, second has matching elements in different batches (after
198 # sorting).
199 self.assertEqual(
200 rows[0:2],
201 list(
202 registry.fetchOpaqueData(
203 table,
204 id=list(range(1000)) + list(range(100, 0, -1)),
205 name=["one"] + [f"q{i}" for i in range(2200)] + ["two"],
206 )
207 ),
208 )
209 self.assertEqual([], list(registry.fetchOpaqueData(table, id=1, name="two")))
210 registry.deleteOpaqueData(table, id=3)
211 self.assertCountEqual(rows[:2], list(registry.fetchOpaqueData(table)))
212 registry.deleteOpaqueData(table)
213 self.assertEqual([], list(registry.fetchOpaqueData(table)))
215 def testDatasetType(self):
216 """Tests for `Registry.registerDatasetType` and
217 `Registry.getDatasetType`.
218 """
219 registry = self.makeRegistry()
220 # Check valid insert
221 datasetTypeName = "test"
222 storageClass = StorageClass("testDatasetType")
223 registry.storageClasses.registerStorageClass(storageClass)
224 dimensions = registry.dimensions.extract(("instrument", "visit"))
225 differentDimensions = registry.dimensions.extract(("instrument", "patch"))
226 inDatasetType = DatasetType(datasetTypeName, dimensions, storageClass)
227 # Inserting for the first time should return True
228 self.assertTrue(registry.registerDatasetType(inDatasetType))
229 outDatasetType1 = registry.getDatasetType(datasetTypeName)
230 self.assertEqual(outDatasetType1, inDatasetType)
232 # Re-inserting should work
233 self.assertFalse(registry.registerDatasetType(inDatasetType))
234 # Except when they are not identical
235 with self.assertRaises(ConflictingDefinitionError):
236 nonIdenticalDatasetType = DatasetType(datasetTypeName, differentDimensions, storageClass)
237 registry.registerDatasetType(nonIdenticalDatasetType)
239 # Template can be None
240 datasetTypeName = "testNoneTemplate"
241 storageClass = StorageClass("testDatasetType2")
242 registry.storageClasses.registerStorageClass(storageClass)
243 dimensions = registry.dimensions.extract(("instrument", "visit"))
244 inDatasetType = DatasetType(datasetTypeName, dimensions, storageClass)
245 registry.registerDatasetType(inDatasetType)
246 outDatasetType2 = registry.getDatasetType(datasetTypeName)
247 self.assertEqual(outDatasetType2, inDatasetType)
249 allTypes = set(registry.queryDatasetTypes())
250 self.assertEqual(allTypes, {outDatasetType1, outDatasetType2})
252 def testDimensions(self):
253 """Tests for `Registry.insertDimensionData`,
254 `Registry.syncDimensionData`, and `Registry.expandDataId`.
255 """
256 registry = self.makeRegistry()
257 dimensionName = "instrument"
258 dimension = registry.dimensions[dimensionName]
259 dimensionValue = {
260 "name": "DummyCam",
261 "visit_max": 10,
262 "exposure_max": 10,
263 "detector_max": 2,
264 "class_name": "lsst.obs.base.Instrument",
265 }
266 registry.insertDimensionData(dimensionName, dimensionValue)
267 # Inserting the same value twice should fail
268 with self.assertRaises(sqlalchemy.exc.IntegrityError):
269 registry.insertDimensionData(dimensionName, dimensionValue)
270 # expandDataId should retrieve the record we just inserted
271 self.assertEqual(
272 registry.expandDataId(instrument="DummyCam", graph=dimension.graph)
273 .records[dimensionName]
274 .toDict(),
275 dimensionValue,
276 )
277 # expandDataId should raise if there is no record with the given ID.
278 with self.assertRaises(DataIdValueError):
279 registry.expandDataId({"instrument": "Unknown"}, graph=dimension.graph)
280 # band doesn't have a table; insert should fail.
281 with self.assertRaises(TypeError):
282 registry.insertDimensionData("band", {"band": "i"})
283 dimensionName2 = "physical_filter"
284 dimension2 = registry.dimensions[dimensionName2]
285 dimensionValue2 = {"name": "DummyCam_i", "band": "i"}
286 # Missing required dependency ("instrument") should fail
287 with self.assertRaises(KeyError):
288 registry.insertDimensionData(dimensionName2, dimensionValue2)
289 # Adding required dependency should fix the failure
290 dimensionValue2["instrument"] = "DummyCam"
291 registry.insertDimensionData(dimensionName2, dimensionValue2)
292 # expandDataId should retrieve the record we just inserted.
293 self.assertEqual(
294 registry.expandDataId(instrument="DummyCam", physical_filter="DummyCam_i", graph=dimension2.graph)
295 .records[dimensionName2]
296 .toDict(),
297 dimensionValue2,
298 )
299 # Use syncDimensionData to insert a new record successfully.
300 dimensionName3 = "detector"
301 dimensionValue3 = {
302 "instrument": "DummyCam",
303 "id": 1,
304 "full_name": "one",
305 "name_in_raft": "zero",
306 "purpose": "SCIENCE",
307 }
308 self.assertTrue(registry.syncDimensionData(dimensionName3, dimensionValue3))
309 # Sync that again. Note that one field ("raft") is NULL, and that
310 # should be okay.
311 self.assertFalse(registry.syncDimensionData(dimensionName3, dimensionValue3))
312 # Now try that sync with the same primary key but a different value.
313 # This should fail.
314 with self.assertRaises(ConflictingDefinitionError):
315 registry.syncDimensionData(
316 dimensionName3,
317 {
318 "instrument": "DummyCam",
319 "id": 1,
320 "full_name": "one",
321 "name_in_raft": "four",
322 "purpose": "SCIENCE",
323 },
324 )
326 @unittest.skipIf(np is None, "numpy not available.")
327 def testNumpyDataId(self):
328 """Test that we can use a numpy int in a dataId."""
329 registry = self.makeRegistry()
330 dimensionEntries = [
331 ("instrument", {"instrument": "DummyCam"}),
332 ("physical_filter", {"instrument": "DummyCam", "name": "d-r", "band": "R"}),
333 # Using an np.int64 here fails unless Records.fromDict is also
334 # patched to look for numbers.Integral
335 ("visit", {"instrument": "DummyCam", "id": 42, "name": "fortytwo", "physical_filter": "d-r"}),
336 ]
337 for args in dimensionEntries:
338 registry.insertDimensionData(*args)
340 # Try a normal integer and something that looks like an int but
341 # is not.
342 for visit_id in (42, np.int64(42)):
343 with self.subTest(visit_id=visit_id, id_type=type(visit_id).__name__):
344 expanded = registry.expandDataId({"instrument": "DummyCam", "visit": visit_id})
345 self.assertEqual(expanded["visit"], int(visit_id))
346 self.assertIsInstance(expanded["visit"], int)
348 def testDataIdRelationships(self):
349 """Test that `Registry.expandDataId` raises an exception when the given
350 keys are inconsistent.
351 """
352 registry = self.makeRegistry()
353 self.loadData(registry, "base.yaml")
354 # Insert a few more dimension records for the next test.
355 registry.insertDimensionData(
356 "exposure",
357 {"instrument": "Cam1", "id": 1, "obs_id": "one", "physical_filter": "Cam1-G"},
358 )
359 registry.insertDimensionData(
360 "exposure",
361 {"instrument": "Cam1", "id": 2, "obs_id": "two", "physical_filter": "Cam1-G"},
362 )
363 registry.insertDimensionData(
364 "visit_system",
365 {"instrument": "Cam1", "id": 0, "name": "one-to-one"},
366 )
367 registry.insertDimensionData(
368 "visit",
369 {"instrument": "Cam1", "id": 1, "name": "one", "physical_filter": "Cam1-G", "visit_system": 0},
370 )
371 registry.insertDimensionData(
372 "visit_definition",
373 {"instrument": "Cam1", "visit": 1, "exposure": 1, "visit_system": 0},
374 )
375 with self.assertRaises(InconsistentDataIdError):
376 registry.expandDataId(
377 {"instrument": "Cam1", "visit": 1, "exposure": 2},
378 )
380 def testDataset(self):
381 """Basic tests for `Registry.insertDatasets`, `Registry.getDataset`,
382 and `Registry.removeDatasets`.
383 """
384 registry = self.makeRegistry()
385 self.loadData(registry, "base.yaml")
386 run = "tésτ"
387 registry.registerRun(run)
388 datasetType = registry.getDatasetType("bias")
389 dataId = {"instrument": "Cam1", "detector": 2}
390 (ref,) = registry.insertDatasets(datasetType, dataIds=[dataId], run=run)
391 outRef = registry.getDataset(ref.id)
392 self.assertIsNotNone(ref.id)
393 self.assertEqual(ref, outRef)
394 with self.assertRaises(ConflictingDefinitionError):
395 registry.insertDatasets(datasetType, dataIds=[dataId], run=run)
396 registry.removeDatasets([ref])
397 self.assertIsNone(registry.findDataset(datasetType, dataId, collections=[run]))
399 def testFindDataset(self):
400 """Tests for `Registry.findDataset`."""
401 registry = self.makeRegistry()
402 self.loadData(registry, "base.yaml")
403 run = "tésτ"
404 datasetType = registry.getDatasetType("bias")
405 dataId = {"instrument": "Cam1", "detector": 4}
406 registry.registerRun(run)
407 (inputRef,) = registry.insertDatasets(datasetType, dataIds=[dataId], run=run)
408 outputRef = registry.findDataset(datasetType, dataId, collections=[run])
409 self.assertEqual(outputRef, inputRef)
410 # Check that retrieval with invalid dataId raises
411 with self.assertRaises(LookupError):
412 dataId = {"instrument": "Cam1"} # no detector
413 registry.findDataset(datasetType, dataId, collections=run)
414 # Check that different dataIds match to different datasets
415 dataId1 = {"instrument": "Cam1", "detector": 1}
416 (inputRef1,) = registry.insertDatasets(datasetType, dataIds=[dataId1], run=run)
417 dataId2 = {"instrument": "Cam1", "detector": 2}
418 (inputRef2,) = registry.insertDatasets(datasetType, dataIds=[dataId2], run=run)
419 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=run), inputRef1)
420 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=run), inputRef2)
421 self.assertNotEqual(registry.findDataset(datasetType, dataId1, collections=run), inputRef2)
422 self.assertNotEqual(registry.findDataset(datasetType, dataId2, collections=run), inputRef1)
423 # Check that requesting a non-existing dataId returns None
424 nonExistingDataId = {"instrument": "Cam1", "detector": 3}
425 self.assertIsNone(registry.findDataset(datasetType, nonExistingDataId, collections=run))
427 def testRemoveDatasetTypeSuccess(self):
428 """Test that Registry.removeDatasetType works when there are no
429 datasets of that type present.
430 """
431 registry = self.makeRegistry()
432 self.loadData(registry, "base.yaml")
433 registry.removeDatasetType("flat")
434 with self.assertRaises(KeyError):
435 registry.getDatasetType("flat")
437 def testRemoveDatasetTypeFailure(self):
438 """Test that Registry.removeDatasetType raises when there are datasets
439 of that type present or if the dataset type is for a component.
440 """
441 registry = self.makeRegistry()
442 self.loadData(registry, "base.yaml")
443 self.loadData(registry, "datasets.yaml")
444 with self.assertRaises(OrphanedRecordError):
445 registry.removeDatasetType("flat")
446 with self.assertRaises(ValueError):
447 registry.removeDatasetType(DatasetType.nameWithComponent("flat", "image"))
449 def testImportDatasetsUUID(self):
450 """Test for `Registry._importDatasets` with UUID dataset ID."""
451 if not self.datasetsManager.endswith(".ByDimensionsDatasetRecordStorageManagerUUID"):
452 self.skipTest(f"Unexpected dataset manager {self.datasetsManager}")
454 registry = self.makeRegistry()
455 self.loadData(registry, "base.yaml")
456 for run in range(6):
457 registry.registerRun(f"run{run}")
458 datasetTypeBias = registry.getDatasetType("bias")
459 datasetTypeFlat = registry.getDatasetType("flat")
460 dataIdBias1 = {"instrument": "Cam1", "detector": 1}
461 dataIdBias2 = {"instrument": "Cam1", "detector": 2}
462 dataIdFlat1 = {"instrument": "Cam1", "detector": 1, "physical_filter": "Cam1-G", "band": "g"}
464 dataset_id = uuid.uuid4()
465 ref = DatasetRef(datasetTypeBias, dataIdBias1, id=dataset_id, run="run0")
466 (ref1,) = registry._importDatasets([ref])
467 # UUID is used without change
468 self.assertEqual(ref.id, ref1.id)
470 # All different failure modes
471 refs = (
472 # Importing same DatasetRef with different dataset ID is an error
473 DatasetRef(datasetTypeBias, dataIdBias1, id=uuid.uuid4(), run="run0"),
474 # Same DatasetId but different DataId
475 DatasetRef(datasetTypeBias, dataIdBias2, id=ref1.id, run="run0"),
476 DatasetRef(datasetTypeFlat, dataIdFlat1, id=ref1.id, run="run0"),
477 # Same DatasetRef and DatasetId but different run
478 DatasetRef(datasetTypeBias, dataIdBias1, id=ref1.id, run="run1"),
479 )
480 for ref in refs:
481 with self.assertRaises(ConflictingDefinitionError):
482 registry._importDatasets([ref])
484 # Test for non-unique IDs, they can be re-imported multiple times.
485 for run, idGenMode in ((2, DatasetIdGenEnum.DATAID_TYPE), (4, DatasetIdGenEnum.DATAID_TYPE_RUN)):
486 with self.subTest(idGenMode=idGenMode):
488 # Use integer dataset ID to force UUID calculation in _import
489 ref = DatasetRef(datasetTypeBias, dataIdBias1, id=0, run=f"run{run}")
490 (ref1,) = registry._importDatasets([ref], idGenerationMode=idGenMode)
491 self.assertIsInstance(ref1.id, uuid.UUID)
492 self.assertEqual(ref1.id.version, 5)
494 # Importing it again is OK
495 (ref2,) = registry._importDatasets([ref1])
496 self.assertEqual(ref2.id, ref1.id)
498 # Cannot import to different run with the same ID
499 ref = DatasetRef(datasetTypeBias, dataIdBias1, id=ref1.id, run=f"run{run+1}")
500 with self.assertRaises(ConflictingDefinitionError):
501 registry._importDatasets([ref])
503 ref = DatasetRef(datasetTypeBias, dataIdBias1, id=0, run=f"run{run+1}")
504 if idGenMode is DatasetIdGenEnum.DATAID_TYPE:
505 # Cannot import same DATAID_TYPE ref into a new run
506 with self.assertRaises(ConflictingDefinitionError):
507 (ref2,) = registry._importDatasets([ref], idGenerationMode=idGenMode)
508 else:
509 # DATAID_TYPE_RUN ref can be imported into a new run
510 (ref2,) = registry._importDatasets([ref], idGenerationMode=idGenMode)
512 def testImportDatasetsInt(self):
513 """Test for `Registry._importDatasets` with integer dataset ID."""
514 if not self.datasetsManager.endswith(".ByDimensionsDatasetRecordStorageManager"):
515 self.skipTest(f"Unexpected dataset manager {self.datasetsManager}")
517 registry = self.makeRegistry()
518 self.loadData(registry, "base.yaml")
519 run = "tésτ"
520 registry.registerRun(run)
521 datasetTypeBias = registry.getDatasetType("bias")
522 datasetTypeFlat = registry.getDatasetType("flat")
523 dataIdBias1 = {"instrument": "Cam1", "detector": 1}
524 dataIdBias2 = {"instrument": "Cam1", "detector": 2}
525 dataIdFlat1 = {"instrument": "Cam1", "detector": 1, "physical_filter": "Cam1-G", "band": "g"}
526 dataset_id = 999999999
528 ref = DatasetRef(datasetTypeBias, dataIdBias1, id=dataset_id, run=run)
529 (ref1,) = registry._importDatasets([ref])
530 # Should make new integer ID.
531 self.assertNotEqual(ref1.id, ref.id)
533 # Ingesting same dataId with different dataset ID is an error
534 ref2 = ref1.unresolved().resolved(dataset_id, run=run)
535 with self.assertRaises(ConflictingDefinitionError):
536 registry._importDatasets([ref2])
538 # Ingesting different dataId with the same dataset ID should work
539 ref3 = DatasetRef(datasetTypeBias, dataIdBias2, id=ref1.id, run=run)
540 (ref4,) = registry._importDatasets([ref3])
541 self.assertNotEqual(ref4.id, ref1.id)
543 ref3 = DatasetRef(datasetTypeFlat, dataIdFlat1, id=ref1.id, run=run)
544 (ref4,) = registry._importDatasets([ref3])
545 self.assertNotEqual(ref4.id, ref1.id)
547 def testDatasetTypeComponentQueries(self):
548 """Test component options when querying for dataset types."""
549 registry = self.makeRegistry()
550 self.loadData(registry, "base.yaml")
551 self.loadData(registry, "datasets.yaml")
552 # Test querying for dataset types with different inputs.
553 # First query for all dataset types; components should only be included
554 # when components=True.
555 self.assertEqual({"bias", "flat"}, NamedValueSet(registry.queryDatasetTypes()).names)
556 self.assertEqual({"bias", "flat"}, NamedValueSet(registry.queryDatasetTypes(components=False)).names)
557 self.assertLess(
558 {"bias", "flat", "bias.wcs", "flat.photoCalib"},
559 NamedValueSet(registry.queryDatasetTypes(components=True)).names,
560 )
561 # Use a pattern that can match either parent or components. Again,
562 # components are only returned if components=True.
563 self.assertEqual({"bias"}, NamedValueSet(registry.queryDatasetTypes(re.compile("^bias.*"))).names)
564 self.assertEqual(
565 {"bias"}, NamedValueSet(registry.queryDatasetTypes(re.compile("^bias.*"), components=False)).names
566 )
567 self.assertLess(
568 {"bias", "bias.wcs"},
569 NamedValueSet(registry.queryDatasetTypes(re.compile("^bias.*"), components=True)).names,
570 )
571 # This pattern matches only a component. In this case we also return
572 # that component dataset type if components=None.
573 self.assertEqual(
574 {"bias.wcs"}, NamedValueSet(registry.queryDatasetTypes(re.compile(r"^bias\.wcs"))).names
575 )
576 self.assertEqual(
577 set(),
578 NamedValueSet(registry.queryDatasetTypes(re.compile(r"^bias\.wcs"), components=False)).names,
579 )
580 self.assertEqual(
581 {"bias.wcs"},
582 NamedValueSet(registry.queryDatasetTypes(re.compile(r"^bias\.wcs"), components=True)).names,
583 )
584 # Add a dataset type using a StorageClass that we'll then remove; check
585 # that this does not affect our ability to query for dataset types
586 # (though it will warn).
587 tempStorageClass = StorageClass(
588 name="TempStorageClass",
589 components={"data", registry.storageClasses.getStorageClass("StructuredDataDict")},
590 )
591 registry.storageClasses.registerStorageClass(tempStorageClass)
592 datasetType = DatasetType(
593 "temporary",
594 dimensions=["instrument"],
595 storageClass=tempStorageClass,
596 universe=registry.dimensions,
597 )
598 registry.registerDatasetType(datasetType)
599 registry.storageClasses._unregisterStorageClass(tempStorageClass.name)
600 datasetType._storageClass = None
601 del tempStorageClass
602 # Querying for all dataset types, including components, should include
603 # at least all non-component dataset types (and I don't want to
604 # enumerate all of the Exposure components for bias and flat here).
605 with self.assertLogs("lsst.daf.butler.registries", logging.WARN) as cm:
606 everything = NamedValueSet(registry.queryDatasetTypes(components=True))
607 self.assertIn("TempStorageClass", cm.output[0])
608 self.assertLess({"bias", "flat", "temporary"}, everything.names)
609 # It should not include "temporary.columns", because we tried to remove
610 # the storage class that would tell it about that. So if the next line
611 # fails (i.e. "temporary.columns" _is_ in everything.names), it means
612 # this part of the test isn't doing anything, because the _unregister
613 # call about isn't simulating the real-life case we want it to
614 # simulate, in which different versions of daf_butler in entirely
615 # different Python processes interact with the same repo.
616 self.assertNotIn("temporary.data", everything.names)
617 # Query for dataset types that start with "temp". This should again
618 # not include the component, and also not fail.
619 with self.assertLogs("lsst.daf.butler.registries", logging.WARN) as cm:
620 startsWithTemp = NamedValueSet(registry.queryDatasetTypes(re.compile("temp.*")))
621 self.assertIn("TempStorageClass", cm.output[0])
622 self.assertEqual({"temporary"}, startsWithTemp.names)
623 # Querying with no components should not warn at all.
624 with self.assertLogs("lsst.daf.butler.registries", logging.WARN) as cm:
625 startsWithTemp = NamedValueSet(registry.queryDatasetTypes(re.compile("temp.*"), components=False))
626 # Must issue a warning of our own to be captured.
627 logging.getLogger("lsst.daf.butler.registries").warning("test message")
628 self.assertEqual(len(cm.output), 1)
629 self.assertIn("test message", cm.output[0])
631 def testComponentLookups(self):
632 """Test searching for component datasets via their parents."""
633 registry = self.makeRegistry()
634 self.loadData(registry, "base.yaml")
635 self.loadData(registry, "datasets.yaml")
636 # Test getting the child dataset type (which does still exist in the
637 # Registry), and check for consistency with
638 # DatasetRef.makeComponentRef.
639 collection = "imported_g"
640 parentType = registry.getDatasetType("bias")
641 childType = registry.getDatasetType("bias.wcs")
642 parentRefResolved = registry.findDataset(
643 parentType, collections=collection, instrument="Cam1", detector=1
644 )
645 self.assertIsInstance(parentRefResolved, DatasetRef)
646 self.assertEqual(childType, parentRefResolved.makeComponentRef("wcs").datasetType)
647 # Search for a single dataset with findDataset.
648 childRef1 = registry.findDataset("bias.wcs", collections=collection, dataId=parentRefResolved.dataId)
649 self.assertEqual(childRef1, parentRefResolved.makeComponentRef("wcs"))
650 # Search for detector data IDs constrained by component dataset
651 # existence with queryDataIds.
652 dataIds = registry.queryDataIds(
653 ["detector"],
654 datasets=["bias.wcs"],
655 collections=collection,
656 ).toSet()
657 self.assertEqual(
658 dataIds,
659 DataCoordinateSet(
660 {
661 DataCoordinate.standardize(instrument="Cam1", detector=d, graph=parentType.dimensions)
662 for d in (1, 2, 3)
663 },
664 parentType.dimensions,
665 ),
666 )
667 # Search for multiple datasets of a single type with queryDatasets.
668 childRefs2 = set(
669 registry.queryDatasets(
670 "bias.wcs",
671 collections=collection,
672 )
673 )
674 self.assertEqual(
675 {ref.unresolved() for ref in childRefs2}, {DatasetRef(childType, dataId) for dataId in dataIds}
676 )
678 def testCollections(self):
679 """Tests for registry methods that manage collections."""
680 registry = self.makeRegistry()
681 other_registry = self.makeRegistry(share_repo_with=registry)
682 self.loadData(registry, "base.yaml")
683 self.loadData(registry, "datasets.yaml")
684 run1 = "imported_g"
685 run2 = "imported_r"
686 # Test setting a collection docstring after it has been created.
687 registry.setCollectionDocumentation(run1, "doc for run1")
688 self.assertEqual(registry.getCollectionDocumentation(run1), "doc for run1")
689 registry.setCollectionDocumentation(run1, None)
690 self.assertIsNone(registry.getCollectionDocumentation(run1))
691 datasetType = "bias"
692 # Find some datasets via their run's collection.
693 dataId1 = {"instrument": "Cam1", "detector": 1}
694 ref1 = registry.findDataset(datasetType, dataId1, collections=run1)
695 self.assertIsNotNone(ref1)
696 dataId2 = {"instrument": "Cam1", "detector": 2}
697 ref2 = registry.findDataset(datasetType, dataId2, collections=run1)
698 self.assertIsNotNone(ref2)
699 # Associate those into a new collection, then look for them there.
700 tag1 = "tag1"
701 registry.registerCollection(tag1, type=CollectionType.TAGGED, doc="doc for tag1")
702 # Check that we can query for old and new collections by type.
703 self.assertEqual(set(registry.queryCollections(collectionTypes=CollectionType.RUN)), {run1, run2})
704 self.assertEqual(
705 set(registry.queryCollections(collectionTypes={CollectionType.TAGGED, CollectionType.RUN})),
706 {tag1, run1, run2},
707 )
708 self.assertEqual(registry.getCollectionDocumentation(tag1), "doc for tag1")
709 registry.associate(tag1, [ref1, ref2])
710 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=tag1), ref1)
711 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=tag1), ref2)
712 # Disassociate one and verify that we can't it there anymore...
713 registry.disassociate(tag1, [ref1])
714 self.assertIsNone(registry.findDataset(datasetType, dataId1, collections=tag1))
715 # ...but we can still find ref2 in tag1, and ref1 in the run.
716 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=run1), ref1)
717 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=tag1), ref2)
718 collections = set(registry.queryCollections())
719 self.assertEqual(collections, {run1, run2, tag1})
720 # Associate both refs into tag1 again; ref2 is already there, but that
721 # should be a harmless no-op.
722 registry.associate(tag1, [ref1, ref2])
723 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=tag1), ref1)
724 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=tag1), ref2)
725 # Get a different dataset (from a different run) that has the same
726 # dataset type and data ID as ref2.
727 ref2b = registry.findDataset(datasetType, dataId2, collections=run2)
728 self.assertNotEqual(ref2, ref2b)
729 # Attempting to associate that into tag1 should be an error.
730 with self.assertRaises(ConflictingDefinitionError):
731 registry.associate(tag1, [ref2b])
732 # That error shouldn't have messed up what we had before.
733 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=tag1), ref1)
734 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=tag1), ref2)
735 # Attempt to associate the conflicting dataset again, this time with
736 # a dataset that isn't in the collection and won't cause a conflict.
737 # Should also fail without modifying anything.
738 dataId3 = {"instrument": "Cam1", "detector": 3}
739 ref3 = registry.findDataset(datasetType, dataId3, collections=run1)
740 with self.assertRaises(ConflictingDefinitionError):
741 registry.associate(tag1, [ref3, ref2b])
742 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=tag1), ref1)
743 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=tag1), ref2)
744 self.assertIsNone(registry.findDataset(datasetType, dataId3, collections=tag1))
745 # Register a chained collection that searches [tag1, run2]
746 chain1 = "chain1"
747 registry.registerCollection(chain1, type=CollectionType.CHAINED)
748 self.assertIs(registry.getCollectionType(chain1), CollectionType.CHAINED)
749 # Chained collection exists, but has no collections in it.
750 self.assertFalse(registry.getCollectionChain(chain1))
751 # If we query for all collections, we should get the chained collection
752 # only if we don't ask to flatten it (i.e. yield only its children).
753 self.assertEqual(set(registry.queryCollections(flattenChains=False)), {tag1, run1, run2, chain1})
754 self.assertEqual(set(registry.queryCollections(flattenChains=True)), {tag1, run1, run2})
755 # Attempt to set its child collections to something circular; that
756 # should fail.
757 with self.assertRaises(ValueError):
758 registry.setCollectionChain(chain1, [tag1, chain1])
759 # Add the child collections.
760 registry.setCollectionChain(chain1, [tag1, run2])
761 self.assertEqual(list(registry.getCollectionChain(chain1)), [tag1, run2])
762 self.assertEqual(registry.getCollectionParentChains(tag1), {chain1})
763 self.assertEqual(registry.getCollectionParentChains(run2), {chain1})
764 # Refresh the other registry that points to the same repo, and make
765 # sure it can see the things we've done (note that this does require
766 # an explicit refresh(); that's the documented behavior, because
767 # caching is ~impossible otherwise).
768 if other_registry is not None:
769 other_registry.refresh()
770 self.assertEqual(list(other_registry.getCollectionChain(chain1)), [tag1, run2])
771 self.assertEqual(other_registry.getCollectionParentChains(tag1), {chain1})
772 self.assertEqual(other_registry.getCollectionParentChains(run2), {chain1})
773 # Searching for dataId1 or dataId2 in the chain should return ref1 and
774 # ref2, because both are in tag1.
775 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=chain1), ref1)
776 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=chain1), ref2)
777 # Now disassociate ref2 from tag1. The search (for bias) with
778 # dataId2 in chain1 should then:
779 # 1. not find it in tag1
780 # 2. find a different dataset in run2
781 registry.disassociate(tag1, [ref2])
782 ref2b = registry.findDataset(datasetType, dataId2, collections=chain1)
783 self.assertNotEqual(ref2b, ref2)
784 self.assertEqual(ref2b, registry.findDataset(datasetType, dataId2, collections=run2))
785 # Define a new chain so we can test recursive chains.
786 chain2 = "chain2"
787 registry.registerCollection(chain2, type=CollectionType.CHAINED)
788 registry.setCollectionChain(chain2, [run2, chain1])
789 self.assertEqual(registry.getCollectionParentChains(chain1), {chain2})
790 self.assertEqual(registry.getCollectionParentChains(run2), {chain1, chain2})
791 # Query for collections matching a regex.
792 self.assertCountEqual(
793 list(registry.queryCollections(re.compile("imported_."), flattenChains=False)),
794 ["imported_r", "imported_g"],
795 )
796 # Query for collections matching a regex or an explicit str.
797 self.assertCountEqual(
798 list(registry.queryCollections([re.compile("imported_."), "chain1"], flattenChains=False)),
799 ["imported_r", "imported_g", "chain1"],
800 )
801 # Search for bias with dataId1 should find it via tag1 in chain2,
802 # recursing, because is not in run1.
803 self.assertIsNone(registry.findDataset(datasetType, dataId1, collections=run2))
804 self.assertEqual(registry.findDataset(datasetType, dataId1, collections=chain2), ref1)
805 # Search for bias with dataId2 should find it in run2 (ref2b).
806 self.assertEqual(registry.findDataset(datasetType, dataId2, collections=chain2), ref2b)
807 # Search for a flat that is in run2. That should not be found
808 # at the front of chain2, because of the restriction to bias
809 # on run2 there, but it should be found in at the end of chain1.
810 dataId4 = {"instrument": "Cam1", "detector": 3, "physical_filter": "Cam1-R2"}
811 ref4 = registry.findDataset("flat", dataId4, collections=run2)
812 self.assertIsNotNone(ref4)
813 self.assertEqual(ref4, registry.findDataset("flat", dataId4, collections=chain2))
814 # Deleting a collection that's part of a CHAINED collection is not
815 # allowed, and is exception-safe.
816 with self.assertRaises(Exception):
817 registry.removeCollection(run2)
818 self.assertEqual(registry.getCollectionType(run2), CollectionType.RUN)
819 with self.assertRaises(Exception):
820 registry.removeCollection(chain1)
821 self.assertEqual(registry.getCollectionType(chain1), CollectionType.CHAINED)
822 # Actually remove chain2, test that it's gone by asking for its type.
823 registry.removeCollection(chain2)
824 with self.assertRaises(MissingCollectionError):
825 registry.getCollectionType(chain2)
826 # Actually remove run2 and chain1, which should work now.
827 registry.removeCollection(chain1)
828 registry.removeCollection(run2)
829 with self.assertRaises(MissingCollectionError):
830 registry.getCollectionType(run2)
831 with self.assertRaises(MissingCollectionError):
832 registry.getCollectionType(chain1)
833 # Remove tag1 as well, just to test that we can remove TAGGED
834 # collections.
835 registry.removeCollection(tag1)
836 with self.assertRaises(MissingCollectionError):
837 registry.getCollectionType(tag1)
839 def testCollectionChainFlatten(self):
840 """Test that Registry.setCollectionChain obeys its 'flatten' option."""
841 registry = self.makeRegistry()
842 registry.registerCollection("inner", CollectionType.CHAINED)
843 registry.registerCollection("innermost", CollectionType.RUN)
844 registry.setCollectionChain("inner", ["innermost"])
845 registry.registerCollection("outer", CollectionType.CHAINED)
846 registry.setCollectionChain("outer", ["inner"], flatten=False)
847 self.assertEqual(list(registry.getCollectionChain("outer")), ["inner"])
848 registry.setCollectionChain("outer", ["inner"], flatten=True)
849 self.assertEqual(list(registry.getCollectionChain("outer")), ["innermost"])
851 def testBasicTransaction(self):
852 """Test that all operations within a single transaction block are
853 rolled back if an exception propagates out of the block.
854 """
855 registry = self.makeRegistry()
856 storageClass = StorageClass("testDatasetType")
857 registry.storageClasses.registerStorageClass(storageClass)
858 with registry.transaction():
859 registry.insertDimensionData("instrument", {"name": "Cam1", "class_name": "A"})
860 with self.assertRaises(ValueError):
861 with registry.transaction():
862 registry.insertDimensionData("instrument", {"name": "Cam2"})
863 raise ValueError("Oops, something went wrong")
864 # Cam1 should exist
865 self.assertEqual(registry.expandDataId(instrument="Cam1").records["instrument"].class_name, "A")
866 # But Cam2 and Cam3 should both not exist
867 with self.assertRaises(DataIdValueError):
868 registry.expandDataId(instrument="Cam2")
869 with self.assertRaises(DataIdValueError):
870 registry.expandDataId(instrument="Cam3")
872 def testNestedTransaction(self):
873 """Test that operations within a transaction block are not rolled back
874 if an exception propagates out of an inner transaction block and is
875 then caught.
876 """
877 registry = self.makeRegistry()
878 dimension = registry.dimensions["instrument"]
879 dataId1 = {"instrument": "DummyCam"}
880 dataId2 = {"instrument": "DummyCam2"}
881 checkpointReached = False
882 with registry.transaction():
883 # This should be added and (ultimately) committed.
884 registry.insertDimensionData(dimension, dataId1)
885 with self.assertRaises(sqlalchemy.exc.IntegrityError):
886 with registry.transaction(savepoint=True):
887 # This does not conflict, and should succeed (but not
888 # be committed).
889 registry.insertDimensionData(dimension, dataId2)
890 checkpointReached = True
891 # This should conflict and raise, triggerring a rollback
892 # of the previous insertion within the same transaction
893 # context, but not the original insertion in the outer
894 # block.
895 registry.insertDimensionData(dimension, dataId1)
896 self.assertTrue(checkpointReached)
897 self.assertIsNotNone(registry.expandDataId(dataId1, graph=dimension.graph))
898 with self.assertRaises(DataIdValueError):
899 registry.expandDataId(dataId2, graph=dimension.graph)
901 def testInstrumentDimensions(self):
902 """Test queries involving only instrument dimensions, with no joins to
903 skymap."""
904 registry = self.makeRegistry()
906 # need a bunch of dimensions and datasets for test
907 registry.insertDimensionData(
908 "instrument", dict(name="DummyCam", visit_max=25, exposure_max=300, detector_max=6)
909 )
910 registry.insertDimensionData(
911 "physical_filter",
912 dict(instrument="DummyCam", name="dummy_r", band="r"),
913 dict(instrument="DummyCam", name="dummy_i", band="i"),
914 )
915 registry.insertDimensionData(
916 "detector", *[dict(instrument="DummyCam", id=i, full_name=str(i)) for i in range(1, 6)]
917 )
918 registry.insertDimensionData(
919 "visit_system",
920 dict(instrument="DummyCam", id=1, name="default"),
921 )
922 registry.insertDimensionData(
923 "visit",
924 dict(instrument="DummyCam", id=10, name="ten", physical_filter="dummy_i", visit_system=1),
925 dict(instrument="DummyCam", id=11, name="eleven", physical_filter="dummy_r", visit_system=1),
926 dict(instrument="DummyCam", id=20, name="twelve", physical_filter="dummy_r", visit_system=1),
927 )
928 registry.insertDimensionData(
929 "exposure",
930 dict(instrument="DummyCam", id=100, obs_id="100", physical_filter="dummy_i"),
931 dict(instrument="DummyCam", id=101, obs_id="101", physical_filter="dummy_i"),
932 dict(instrument="DummyCam", id=110, obs_id="110", physical_filter="dummy_r"),
933 dict(instrument="DummyCam", id=111, obs_id="111", physical_filter="dummy_r"),
934 dict(instrument="DummyCam", id=200, obs_id="200", physical_filter="dummy_r"),
935 dict(instrument="DummyCam", id=201, obs_id="201", physical_filter="dummy_r"),
936 )
937 registry.insertDimensionData(
938 "visit_definition",
939 dict(instrument="DummyCam", exposure=100, visit_system=1, visit=10),
940 dict(instrument="DummyCam", exposure=101, visit_system=1, visit=10),
941 dict(instrument="DummyCam", exposure=110, visit_system=1, visit=11),
942 dict(instrument="DummyCam", exposure=111, visit_system=1, visit=11),
943 dict(instrument="DummyCam", exposure=200, visit_system=1, visit=20),
944 dict(instrument="DummyCam", exposure=201, visit_system=1, visit=20),
945 )
946 # dataset types
947 run1 = "test1_r"
948 run2 = "test2_r"
949 tagged2 = "test2_t"
950 registry.registerRun(run1)
951 registry.registerRun(run2)
952 registry.registerCollection(tagged2)
953 storageClass = StorageClass("testDataset")
954 registry.storageClasses.registerStorageClass(storageClass)
955 rawType = DatasetType(
956 name="RAW",
957 dimensions=registry.dimensions.extract(("instrument", "exposure", "detector")),
958 storageClass=storageClass,
959 )
960 registry.registerDatasetType(rawType)
961 calexpType = DatasetType(
962 name="CALEXP",
963 dimensions=registry.dimensions.extract(("instrument", "visit", "detector")),
964 storageClass=storageClass,
965 )
966 registry.registerDatasetType(calexpType)
968 # add pre-existing datasets
969 for exposure in (100, 101, 110, 111):
970 for detector in (1, 2, 3):
971 # note that only 3 of 5 detectors have datasets
972 dataId = dict(instrument="DummyCam", exposure=exposure, detector=detector)
973 (ref,) = registry.insertDatasets(rawType, dataIds=[dataId], run=run1)
974 # exposures 100 and 101 appear in both run1 and tagged2.
975 # 100 has different datasets in the different collections
976 # 101 has the same dataset in both collections.
977 if exposure == 100:
978 (ref,) = registry.insertDatasets(rawType, dataIds=[dataId], run=run2)
979 if exposure in (100, 101):
980 registry.associate(tagged2, [ref])
981 # Add pre-existing datasets to tagged2.
982 for exposure in (200, 201):
983 for detector in (3, 4, 5):
984 # note that only 3 of 5 detectors have datasets
985 dataId = dict(instrument="DummyCam", exposure=exposure, detector=detector)
986 (ref,) = registry.insertDatasets(rawType, dataIds=[dataId], run=run2)
987 registry.associate(tagged2, [ref])
989 dimensions = DimensionGraph(
990 registry.dimensions, dimensions=(rawType.dimensions.required | calexpType.dimensions.required)
991 )
992 # Test that single dim string works as well as list of str
993 rows = registry.queryDataIds("visit", datasets=rawType, collections=run1).expanded().toSet()
994 rowsI = registry.queryDataIds(["visit"], datasets=rawType, collections=run1).expanded().toSet()
995 self.assertEqual(rows, rowsI)
996 # with empty expression
997 rows = registry.queryDataIds(dimensions, datasets=rawType, collections=run1).expanded().toSet()
998 self.assertEqual(len(rows), 4 * 3) # 4 exposures times 3 detectors
999 for dataId in rows:
1000 self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure", "visit"))
1001 packer1 = registry.dimensions.makePacker("visit_detector", dataId)
1002 packer2 = registry.dimensions.makePacker("exposure_detector", dataId)
1003 self.assertEqual(
1004 packer1.unpack(packer1.pack(dataId)),
1005 DataCoordinate.standardize(dataId, graph=packer1.dimensions),
1006 )
1007 self.assertEqual(
1008 packer2.unpack(packer2.pack(dataId)),
1009 DataCoordinate.standardize(dataId, graph=packer2.dimensions),
1010 )
1011 self.assertNotEqual(packer1.pack(dataId), packer2.pack(dataId))
1012 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101, 110, 111))
1013 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 11))
1014 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3))
1016 # second collection
1017 rows = registry.queryDataIds(dimensions, datasets=rawType, collections=tagged2).toSet()
1018 self.assertEqual(len(rows), 4 * 3) # 4 exposures times 3 detectors
1019 for dataId in rows:
1020 self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure", "visit"))
1021 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101, 200, 201))
1022 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 20))
1023 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3, 4, 5))
1025 # with two input datasets
1026 rows = registry.queryDataIds(dimensions, datasets=rawType, collections=[run1, tagged2]).toSet()
1027 self.assertEqual(len(set(rows)), 6 * 3) # 6 exposures times 3 detectors; set needed to de-dupe
1028 for dataId in rows:
1029 self.assertCountEqual(dataId.keys(), ("instrument", "detector", "exposure", "visit"))
1030 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101, 110, 111, 200, 201))
1031 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10, 11, 20))
1032 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3, 4, 5))
1034 # limit to single visit
1035 rows = registry.queryDataIds(
1036 dimensions, datasets=rawType, collections=run1, where="visit = 10", instrument="DummyCam"
1037 ).toSet()
1038 self.assertEqual(len(rows), 2 * 3) # 2 exposures times 3 detectors
1039 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101))
1040 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10,))
1041 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3))
1043 # more limiting expression, using link names instead of Table.column
1044 rows = registry.queryDataIds(
1045 dimensions,
1046 datasets=rawType,
1047 collections=run1,
1048 where="visit = 10 and detector > 1 and 'DummyCam'=instrument",
1049 ).toSet()
1050 self.assertEqual(len(rows), 2 * 2) # 2 exposures times 2 detectors
1051 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (100, 101))
1052 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (10,))
1053 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (2, 3))
1055 # queryDataIds with only one of `datasets` and `collections` is an
1056 # error.
1057 with self.assertRaises(CollectionError):
1058 registry.queryDataIds(dimensions, datasets=rawType)
1059 with self.assertRaises(ArgumentError):
1060 registry.queryDataIds(dimensions, collections=run1)
1062 # expression excludes everything
1063 rows = registry.queryDataIds(
1064 dimensions, datasets=rawType, collections=run1, where="visit > 1000", instrument="DummyCam"
1065 ).toSet()
1066 self.assertEqual(len(rows), 0)
1068 # Selecting by physical_filter, this is not in the dimensions, but it
1069 # is a part of the full expression so it should work too.
1070 rows = registry.queryDataIds(
1071 dimensions,
1072 datasets=rawType,
1073 collections=run1,
1074 where="physical_filter = 'dummy_r'",
1075 instrument="DummyCam",
1076 ).toSet()
1077 self.assertEqual(len(rows), 2 * 3) # 2 exposures times 3 detectors
1078 self.assertCountEqual(set(dataId["exposure"] for dataId in rows), (110, 111))
1079 self.assertCountEqual(set(dataId["visit"] for dataId in rows), (11,))
1080 self.assertCountEqual(set(dataId["detector"] for dataId in rows), (1, 2, 3))
1082 def testSkyMapDimensions(self):
1083 """Tests involving only skymap dimensions, no joins to instrument."""
1084 registry = self.makeRegistry()
1086 # need a bunch of dimensions and datasets for test, we want
1087 # "band" in the test so also have to add physical_filter
1088 # dimensions
1089 registry.insertDimensionData("instrument", dict(instrument="DummyCam"))
1090 registry.insertDimensionData(
1091 "physical_filter",
1092 dict(instrument="DummyCam", name="dummy_r", band="r"),
1093 dict(instrument="DummyCam", name="dummy_i", band="i"),
1094 )
1095 registry.insertDimensionData("skymap", dict(name="DummyMap", hash="sha!".encode("utf8")))
1096 for tract in range(10):
1097 registry.insertDimensionData("tract", dict(skymap="DummyMap", id=tract))
1098 registry.insertDimensionData(
1099 "patch",
1100 *[dict(skymap="DummyMap", tract=tract, id=patch, cell_x=0, cell_y=0) for patch in range(10)],
1101 )
1103 # dataset types
1104 run = "tésτ"
1105 registry.registerRun(run)
1106 storageClass = StorageClass("testDataset")
1107 registry.storageClasses.registerStorageClass(storageClass)
1108 calexpType = DatasetType(
1109 name="deepCoadd_calexp",
1110 dimensions=registry.dimensions.extract(("skymap", "tract", "patch", "band")),
1111 storageClass=storageClass,
1112 )
1113 registry.registerDatasetType(calexpType)
1114 mergeType = DatasetType(
1115 name="deepCoadd_mergeDet",
1116 dimensions=registry.dimensions.extract(("skymap", "tract", "patch")),
1117 storageClass=storageClass,
1118 )
1119 registry.registerDatasetType(mergeType)
1120 measType = DatasetType(
1121 name="deepCoadd_meas",
1122 dimensions=registry.dimensions.extract(("skymap", "tract", "patch", "band")),
1123 storageClass=storageClass,
1124 )
1125 registry.registerDatasetType(measType)
1127 dimensions = DimensionGraph(
1128 registry.dimensions,
1129 dimensions=(
1130 calexpType.dimensions.required | mergeType.dimensions.required | measType.dimensions.required
1131 ),
1132 )
1134 # add pre-existing datasets
1135 for tract in (1, 3, 5):
1136 for patch in (2, 4, 6, 7):
1137 dataId = dict(skymap="DummyMap", tract=tract, patch=patch)
1138 registry.insertDatasets(mergeType, dataIds=[dataId], run=run)
1139 for aFilter in ("i", "r"):
1140 dataId = dict(skymap="DummyMap", tract=tract, patch=patch, band=aFilter)
1141 registry.insertDatasets(calexpType, dataIds=[dataId], run=run)
1143 # with empty expression
1144 rows = registry.queryDataIds(dimensions, datasets=[calexpType, mergeType], collections=run).toSet()
1145 self.assertEqual(len(rows), 3 * 4 * 2) # 4 tracts x 4 patches x 2 filters
1146 for dataId in rows:
1147 self.assertCountEqual(dataId.keys(), ("skymap", "tract", "patch", "band"))
1148 self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 3, 5))
1149 self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 4, 6, 7))
1150 self.assertCountEqual(set(dataId["band"] for dataId in rows), ("i", "r"))
1152 # limit to 2 tracts and 2 patches
1153 rows = registry.queryDataIds(
1154 dimensions,
1155 datasets=[calexpType, mergeType],
1156 collections=run,
1157 where="tract IN (1, 5) AND patch IN (2, 7)",
1158 skymap="DummyMap",
1159 ).toSet()
1160 self.assertEqual(len(rows), 2 * 2 * 2) # 2 tracts x 2 patches x 2 filters
1161 self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 5))
1162 self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 7))
1163 self.assertCountEqual(set(dataId["band"] for dataId in rows), ("i", "r"))
1165 # limit to single filter
1166 rows = registry.queryDataIds(
1167 dimensions, datasets=[calexpType, mergeType], collections=run, where="band = 'i'"
1168 ).toSet()
1169 self.assertEqual(len(rows), 3 * 4 * 1) # 4 tracts x 4 patches x 2 filters
1170 self.assertCountEqual(set(dataId["tract"] for dataId in rows), (1, 3, 5))
1171 self.assertCountEqual(set(dataId["patch"] for dataId in rows), (2, 4, 6, 7))
1172 self.assertCountEqual(set(dataId["band"] for dataId in rows), ("i",))
1174 # Specifying non-existing skymap is an exception
1175 with self.assertRaisesRegex(DataIdValueError, "Unknown values specified for governor dimension"):
1176 rows = registry.queryDataIds(
1177 dimensions, datasets=[calexpType, mergeType], collections=run, where="skymap = 'Mars'"
1178 ).toSet()
1180 def testSpatialJoin(self):
1181 """Test queries that involve spatial overlap joins."""
1182 registry = self.makeRegistry()
1183 self.loadData(registry, "hsc-rc2-subset.yaml")
1185 # Dictionary of spatial DatabaseDimensionElements, keyed by the name of
1186 # the TopologicalFamily they belong to. We'll relate all elements in
1187 # each family to all of the elements in each other family.
1188 families = defaultdict(set)
1189 # Dictionary of {element.name: {dataId: region}}.
1190 regions = {}
1191 for element in registry.dimensions.getDatabaseElements():
1192 if element.spatial is not None:
1193 families[element.spatial.name].add(element)
1194 regions[element.name] = {
1195 record.dataId: record.region for record in registry.queryDimensionRecords(element)
1196 }
1198 # If this check fails, it's not necessarily a problem - it may just be
1199 # a reasonable change to the default dimension definitions - but the
1200 # test below depends on there being more than one family to do anything
1201 # useful.
1202 self.assertEqual(len(families), 2)
1204 # Overlap DatabaseDimensionElements with each other.
1205 for family1, family2 in itertools.combinations(families, 2):
1206 for element1, element2 in itertools.product(families[family1], families[family2]):
1207 graph = DimensionGraph.union(element1.graph, element2.graph)
1208 # Construct expected set of overlapping data IDs via a
1209 # brute-force comparison of the regions we've already fetched.
1210 expected = {
1211 DataCoordinate.standardize({**dataId1.byName(), **dataId2.byName()}, graph=graph)
1212 for (dataId1, region1), (dataId2, region2) in itertools.product(
1213 regions[element1.name].items(), regions[element2.name].items()
1214 )
1215 if not region1.isDisjointFrom(region2)
1216 }
1217 self.assertGreater(len(expected), 2, msg="Test that we aren't just comparing empty sets.")
1218 queried = set(registry.queryDataIds(graph))
1219 self.assertEqual(expected, queried)
1221 # Overlap each DatabaseDimensionElement with the commonSkyPix system.
1222 commonSkyPix = registry.dimensions.commonSkyPix
1223 for elementName, regions in regions.items():
1224 graph = DimensionGraph.union(registry.dimensions[elementName].graph, commonSkyPix.graph)
1225 expected = set()
1226 for dataId, region in regions.items():
1227 for begin, end in commonSkyPix.pixelization.envelope(region):
1228 expected.update(
1229 DataCoordinate.standardize({commonSkyPix.name: index, **dataId.byName()}, graph=graph)
1230 for index in range(begin, end)
1231 )
1232 self.assertGreater(len(expected), 2, msg="Test that we aren't just comparing empty sets.")
1233 queried = set(registry.queryDataIds(graph))
1234 self.assertEqual(expected, queried)
1236 def testAbstractQuery(self):
1237 """Test that we can run a query that just lists the known
1238 bands. This is tricky because band is
1239 backed by a query against physical_filter.
1240 """
1241 registry = self.makeRegistry()
1242 registry.insertDimensionData("instrument", dict(name="DummyCam"))
1243 registry.insertDimensionData(
1244 "physical_filter",
1245 dict(instrument="DummyCam", name="dummy_i", band="i"),
1246 dict(instrument="DummyCam", name="dummy_i2", band="i"),
1247 dict(instrument="DummyCam", name="dummy_r", band="r"),
1248 )
1249 rows = registry.queryDataIds(["band"]).toSet()
1250 self.assertCountEqual(
1251 rows,
1252 [
1253 DataCoordinate.standardize(band="i", universe=registry.dimensions),
1254 DataCoordinate.standardize(band="r", universe=registry.dimensions),
1255 ],
1256 )
1258 def testAttributeManager(self):
1259 """Test basic functionality of attribute manager."""
1260 # number of attributes with schema versions in a fresh database,
1261 # 6 managers with 3 records per manager, plus config for dimensions
1262 VERSION_COUNT = 6 * 3 + 1
1264 registry = self.makeRegistry()
1265 attributes = registry._managers.attributes
1267 # check what get() returns for non-existing key
1268 self.assertIsNone(attributes.get("attr"))
1269 self.assertEqual(attributes.get("attr", ""), "")
1270 self.assertEqual(attributes.get("attr", "Value"), "Value")
1271 self.assertEqual(len(list(attributes.items())), VERSION_COUNT)
1273 # cannot store empty key or value
1274 with self.assertRaises(ValueError):
1275 attributes.set("", "value")
1276 with self.assertRaises(ValueError):
1277 attributes.set("attr", "")
1279 # set value of non-existing key
1280 attributes.set("attr", "value")
1281 self.assertEqual(len(list(attributes.items())), VERSION_COUNT + 1)
1282 self.assertEqual(attributes.get("attr"), "value")
1284 # update value of existing key
1285 with self.assertRaises(ButlerAttributeExistsError):
1286 attributes.set("attr", "value2")
1288 attributes.set("attr", "value2", force=True)
1289 self.assertEqual(len(list(attributes.items())), VERSION_COUNT + 1)
1290 self.assertEqual(attributes.get("attr"), "value2")
1292 # delete existing key
1293 self.assertTrue(attributes.delete("attr"))
1294 self.assertEqual(len(list(attributes.items())), VERSION_COUNT)
1296 # delete non-existing key
1297 self.assertFalse(attributes.delete("non-attr"))
1299 # store bunch of keys and get the list back
1300 data = [
1301 ("version.core", "1.2.3"),
1302 ("version.dimensions", "3.2.1"),
1303 ("config.managers.opaque", "ByNameOpaqueTableStorageManager"),
1304 ]
1305 for key, value in data:
1306 attributes.set(key, value)
1307 items = dict(attributes.items())
1308 for key, value in data:
1309 self.assertEqual(items[key], value)
1311 def testQueryDatasetsDeduplication(self):
1312 """Test that the findFirst option to queryDatasets selects datasets
1313 from collections in the order given".
1314 """
1315 registry = self.makeRegistry()
1316 self.loadData(registry, "base.yaml")
1317 self.loadData(registry, "datasets.yaml")
1318 self.assertCountEqual(
1319 list(registry.queryDatasets("bias", collections=["imported_g", "imported_r"])),
1320 [
1321 registry.findDataset("bias", instrument="Cam1", detector=1, collections="imported_g"),
1322 registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_g"),
1323 registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_g"),
1324 registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_r"),
1325 registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_r"),
1326 registry.findDataset("bias", instrument="Cam1", detector=4, collections="imported_r"),
1327 ],
1328 )
1329 self.assertCountEqual(
1330 list(registry.queryDatasets("bias", collections=["imported_g", "imported_r"], findFirst=True)),
1331 [
1332 registry.findDataset("bias", instrument="Cam1", detector=1, collections="imported_g"),
1333 registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_g"),
1334 registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_g"),
1335 registry.findDataset("bias", instrument="Cam1", detector=4, collections="imported_r"),
1336 ],
1337 )
1338 self.assertCountEqual(
1339 list(registry.queryDatasets("bias", collections=["imported_r", "imported_g"], findFirst=True)),
1340 [
1341 registry.findDataset("bias", instrument="Cam1", detector=1, collections="imported_g"),
1342 registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_r"),
1343 registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_r"),
1344 registry.findDataset("bias", instrument="Cam1", detector=4, collections="imported_r"),
1345 ],
1346 )
1348 def testQueryResults(self):
1349 """Test querying for data IDs and then manipulating the QueryResults
1350 object returned to perform other queries.
1351 """
1352 registry = self.makeRegistry()
1353 self.loadData(registry, "base.yaml")
1354 self.loadData(registry, "datasets.yaml")
1355 bias = registry.getDatasetType("bias")
1356 flat = registry.getDatasetType("flat")
1357 # Obtain expected results from methods other than those we're testing
1358 # here. That includes:
1359 # - the dimensions of the data IDs we want to query:
1360 expectedGraph = DimensionGraph(registry.dimensions, names=["detector", "physical_filter"])
1361 # - the dimensions of some other data IDs we'll extract from that:
1362 expectedSubsetGraph = DimensionGraph(registry.dimensions, names=["detector"])
1363 # - the data IDs we expect to obtain from the first queries:
1364 expectedDataIds = DataCoordinateSet(
1365 {
1366 DataCoordinate.standardize(
1367 instrument="Cam1", detector=d, physical_filter=p, universe=registry.dimensions
1368 )
1369 for d, p in itertools.product({1, 2, 3}, {"Cam1-G", "Cam1-R1", "Cam1-R2"})
1370 },
1371 graph=expectedGraph,
1372 hasFull=False,
1373 hasRecords=False,
1374 )
1375 # - the flat datasets we expect to find from those data IDs, in just
1376 # one collection (so deduplication is irrelevant):
1377 expectedFlats = [
1378 registry.findDataset(
1379 flat, instrument="Cam1", detector=1, physical_filter="Cam1-R1", collections="imported_r"
1380 ),
1381 registry.findDataset(
1382 flat, instrument="Cam1", detector=2, physical_filter="Cam1-R1", collections="imported_r"
1383 ),
1384 registry.findDataset(
1385 flat, instrument="Cam1", detector=3, physical_filter="Cam1-R2", collections="imported_r"
1386 ),
1387 ]
1388 # - the data IDs we expect to extract from that:
1389 expectedSubsetDataIds = expectedDataIds.subset(expectedSubsetGraph)
1390 # - the bias datasets we expect to find from those data IDs, after we
1391 # subset-out the physical_filter dimension, both with duplicates:
1392 expectedAllBiases = [
1393 registry.findDataset(bias, instrument="Cam1", detector=1, collections="imported_g"),
1394 registry.findDataset(bias, instrument="Cam1", detector=2, collections="imported_g"),
1395 registry.findDataset(bias, instrument="Cam1", detector=3, collections="imported_g"),
1396 registry.findDataset(bias, instrument="Cam1", detector=2, collections="imported_r"),
1397 registry.findDataset(bias, instrument="Cam1", detector=3, collections="imported_r"),
1398 ]
1399 # - ...and without duplicates:
1400 expectedDeduplicatedBiases = [
1401 registry.findDataset(bias, instrument="Cam1", detector=1, collections="imported_g"),
1402 registry.findDataset(bias, instrument="Cam1", detector=2, collections="imported_r"),
1403 registry.findDataset(bias, instrument="Cam1", detector=3, collections="imported_r"),
1404 ]
1405 # Test against those expected results, using a "lazy" query for the
1406 # data IDs (which re-executes that query each time we use it to do
1407 # something new).
1408 dataIds = registry.queryDataIds(
1409 ["detector", "physical_filter"],
1410 where="detector.purpose = 'SCIENCE'", # this rejects detector=4
1411 instrument="Cam1",
1412 )
1413 self.assertEqual(dataIds.graph, expectedGraph)
1414 self.assertEqual(dataIds.toSet(), expectedDataIds)
1415 self.assertCountEqual(
1416 list(
1417 dataIds.findDatasets(
1418 flat,
1419 collections=["imported_r"],
1420 )
1421 ),
1422 expectedFlats,
1423 )
1424 subsetDataIds = dataIds.subset(expectedSubsetGraph, unique=True)
1425 self.assertEqual(subsetDataIds.graph, expectedSubsetGraph)
1426 self.assertEqual(subsetDataIds.toSet(), expectedSubsetDataIds)
1427 self.assertCountEqual(
1428 list(subsetDataIds.findDatasets(bias, collections=["imported_r", "imported_g"], findFirst=False)),
1429 expectedAllBiases,
1430 )
1431 self.assertCountEqual(
1432 list(subsetDataIds.findDatasets(bias, collections=["imported_r", "imported_g"], findFirst=True)),
1433 expectedDeduplicatedBiases,
1434 )
1435 # Materialize the bias dataset queries (only) by putting the results
1436 # into temporary tables, then repeat those tests.
1437 with subsetDataIds.findDatasets(
1438 bias, collections=["imported_r", "imported_g"], findFirst=False
1439 ).materialize() as biases:
1440 self.assertCountEqual(list(biases), expectedAllBiases)
1441 with subsetDataIds.findDatasets(
1442 bias, collections=["imported_r", "imported_g"], findFirst=True
1443 ).materialize() as biases:
1444 self.assertCountEqual(list(biases), expectedDeduplicatedBiases)
1445 # Materialize the data ID subset query, but not the dataset queries.
1446 with subsetDataIds.materialize() as subsetDataIds:
1447 self.assertEqual(subsetDataIds.graph, expectedSubsetGraph)
1448 self.assertEqual(subsetDataIds.toSet(), expectedSubsetDataIds)
1449 self.assertCountEqual(
1450 list(
1451 subsetDataIds.findDatasets(
1452 bias, collections=["imported_r", "imported_g"], findFirst=False
1453 )
1454 ),
1455 expectedAllBiases,
1456 )
1457 self.assertCountEqual(
1458 list(
1459 subsetDataIds.findDatasets(bias, collections=["imported_r", "imported_g"], findFirst=True)
1460 ),
1461 expectedDeduplicatedBiases,
1462 )
1463 # Materialize the dataset queries, too.
1464 with subsetDataIds.findDatasets(
1465 bias, collections=["imported_r", "imported_g"], findFirst=False
1466 ).materialize() as biases:
1467 self.assertCountEqual(list(biases), expectedAllBiases)
1468 with subsetDataIds.findDatasets(
1469 bias, collections=["imported_r", "imported_g"], findFirst=True
1470 ).materialize() as biases:
1471 self.assertCountEqual(list(biases), expectedDeduplicatedBiases)
1472 # Materialize the original query, but none of the follow-up queries.
1473 with dataIds.materialize() as dataIds:
1474 self.assertEqual(dataIds.graph, expectedGraph)
1475 self.assertEqual(dataIds.toSet(), expectedDataIds)
1476 self.assertCountEqual(
1477 list(
1478 dataIds.findDatasets(
1479 flat,
1480 collections=["imported_r"],
1481 )
1482 ),
1483 expectedFlats,
1484 )
1485 subsetDataIds = dataIds.subset(expectedSubsetGraph, unique=True)
1486 self.assertEqual(subsetDataIds.graph, expectedSubsetGraph)
1487 self.assertEqual(subsetDataIds.toSet(), expectedSubsetDataIds)
1488 self.assertCountEqual(
1489 list(
1490 subsetDataIds.findDatasets(
1491 bias, collections=["imported_r", "imported_g"], findFirst=False
1492 )
1493 ),
1494 expectedAllBiases,
1495 )
1496 self.assertCountEqual(
1497 list(
1498 subsetDataIds.findDatasets(bias, collections=["imported_r", "imported_g"], findFirst=True)
1499 ),
1500 expectedDeduplicatedBiases,
1501 )
1502 # Materialize just the bias dataset queries.
1503 with subsetDataIds.findDatasets(
1504 bias, collections=["imported_r", "imported_g"], findFirst=False
1505 ).materialize() as biases:
1506 self.assertCountEqual(list(biases), expectedAllBiases)
1507 with subsetDataIds.findDatasets(
1508 bias, collections=["imported_r", "imported_g"], findFirst=True
1509 ).materialize() as biases:
1510 self.assertCountEqual(list(biases), expectedDeduplicatedBiases)
1511 # Materialize the subset data ID query, but not the dataset
1512 # queries.
1513 with subsetDataIds.materialize() as subsetDataIds:
1514 self.assertEqual(subsetDataIds.graph, expectedSubsetGraph)
1515 self.assertEqual(subsetDataIds.toSet(), expectedSubsetDataIds)
1516 self.assertCountEqual(
1517 list(
1518 subsetDataIds.findDatasets(
1519 bias, collections=["imported_r", "imported_g"], findFirst=False
1520 )
1521 ),
1522 expectedAllBiases,
1523 )
1524 self.assertCountEqual(
1525 list(
1526 subsetDataIds.findDatasets(
1527 bias, collections=["imported_r", "imported_g"], findFirst=True
1528 )
1529 ),
1530 expectedDeduplicatedBiases,
1531 )
1532 # Materialize the bias dataset queries, too, so now we're
1533 # materializing every single step.
1534 with subsetDataIds.findDatasets(
1535 bias, collections=["imported_r", "imported_g"], findFirst=False
1536 ).materialize() as biases:
1537 self.assertCountEqual(list(biases), expectedAllBiases)
1538 with subsetDataIds.findDatasets(
1539 bias, collections=["imported_r", "imported_g"], findFirst=True
1540 ).materialize() as biases:
1541 self.assertCountEqual(list(biases), expectedDeduplicatedBiases)
1543 def testEmptyDimensionsQueries(self):
1544 """Test Query and QueryResults objects in the case where there are no
1545 dimensions.
1546 """
1547 # Set up test data: one dataset type, two runs, one dataset in each.
1548 registry = self.makeRegistry()
1549 self.loadData(registry, "base.yaml")
1550 schema = DatasetType("schema", dimensions=registry.dimensions.empty, storageClass="Catalog")
1551 registry.registerDatasetType(schema)
1552 dataId = DataCoordinate.makeEmpty(registry.dimensions)
1553 run1 = "run1"
1554 run2 = "run2"
1555 registry.registerRun(run1)
1556 registry.registerRun(run2)
1557 (dataset1,) = registry.insertDatasets(schema, dataIds=[dataId], run=run1)
1558 (dataset2,) = registry.insertDatasets(schema, dataIds=[dataId], run=run2)
1559 # Query directly for both of the datasets, and each one, one at a time.
1560 self.checkQueryResults(
1561 registry.queryDatasets(schema, collections=[run1, run2], findFirst=False), [dataset1, dataset2]
1562 )
1563 self.checkQueryResults(
1564 registry.queryDatasets(schema, collections=[run1, run2], findFirst=True),
1565 [dataset1],
1566 )
1567 self.checkQueryResults(
1568 registry.queryDatasets(schema, collections=[run2, run1], findFirst=True),
1569 [dataset2],
1570 )
1571 # Query for data IDs with no dimensions.
1572 dataIds = registry.queryDataIds([])
1573 self.checkQueryResults(dataIds, [dataId])
1574 # Use queried data IDs to find the datasets.
1575 self.checkQueryResults(
1576 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=False),
1577 [dataset1, dataset2],
1578 )
1579 self.checkQueryResults(
1580 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1581 [dataset1],
1582 )
1583 self.checkQueryResults(
1584 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1585 [dataset2],
1586 )
1587 # Now materialize the data ID query results and repeat those tests.
1588 with dataIds.materialize() as dataIds:
1589 self.checkQueryResults(dataIds, [dataId])
1590 self.checkQueryResults(
1591 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1592 [dataset1],
1593 )
1594 self.checkQueryResults(
1595 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1596 [dataset2],
1597 )
1598 # Query for non-empty data IDs, then subset that to get the empty one.
1599 # Repeat the above tests starting from that.
1600 dataIds = registry.queryDataIds(["instrument"]).subset(registry.dimensions.empty, unique=True)
1601 self.checkQueryResults(dataIds, [dataId])
1602 self.checkQueryResults(
1603 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=False),
1604 [dataset1, dataset2],
1605 )
1606 self.checkQueryResults(
1607 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1608 [dataset1],
1609 )
1610 self.checkQueryResults(
1611 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1612 [dataset2],
1613 )
1614 with dataIds.materialize() as dataIds:
1615 self.checkQueryResults(dataIds, [dataId])
1616 self.checkQueryResults(
1617 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=False),
1618 [dataset1, dataset2],
1619 )
1620 self.checkQueryResults(
1621 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1622 [dataset1],
1623 )
1624 self.checkQueryResults(
1625 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1626 [dataset2],
1627 )
1628 # Query for non-empty data IDs, then materialize, then subset to get
1629 # the empty one. Repeat again.
1630 with registry.queryDataIds(["instrument"]).materialize() as nonEmptyDataIds:
1631 dataIds = nonEmptyDataIds.subset(registry.dimensions.empty, unique=True)
1632 self.checkQueryResults(dataIds, [dataId])
1633 self.checkQueryResults(
1634 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=False),
1635 [dataset1, dataset2],
1636 )
1637 self.checkQueryResults(
1638 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1639 [dataset1],
1640 )
1641 self.checkQueryResults(
1642 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1643 [dataset2],
1644 )
1645 with dataIds.materialize() as dataIds:
1646 self.checkQueryResults(dataIds, [dataId])
1647 self.checkQueryResults(
1648 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=False),
1649 [dataset1, dataset2],
1650 )
1651 self.checkQueryResults(
1652 dataIds.findDatasets(schema, collections=[run1, run2], findFirst=True),
1653 [dataset1],
1654 )
1655 self.checkQueryResults(
1656 dataIds.findDatasets(schema, collections=[run2, run1], findFirst=True),
1657 [dataset2],
1658 )
1660 def testDimensionDataModifications(self):
1661 """Test that modifying dimension records via:
1662 syncDimensionData(..., update=True) and
1663 insertDimensionData(..., replace=True) works as expected, even in the
1664 presence of datasets using those dimensions and spatial overlap
1665 relationships.
1666 """
1668 def unpack_range_set(ranges: lsst.sphgeom.RangeSet) -> Iterator[int]:
1669 """Unpack a sphgeom.RangeSet into the integers it contains."""
1670 for begin, end in ranges:
1671 yield from range(begin, end)
1673 def range_set_hull(
1674 ranges: lsst.sphgeom.RangeSet,
1675 pixelization: lsst.sphgeom.HtmPixelization,
1676 ) -> lsst.sphgeom.ConvexPolygon:
1677 """Create a ConvexPolygon hull of the region defined by a set of
1678 HTM pixelization index ranges.
1679 """
1680 points = []
1681 for index in unpack_range_set(ranges):
1682 points.extend(pixelization.triangle(index).getVertices())
1683 return lsst.sphgeom.ConvexPolygon(points)
1685 # Use HTM to set up an initial parent region (one arbitrary trixel)
1686 # and four child regions (the trixels within the parent at the next
1687 # level. We'll use the parent as a tract/visit region and the children
1688 # as its patch/visit_detector regions.
1689 registry = self.makeRegistry()
1690 htm6 = registry.dimensions.skypix["htm"][6].pixelization
1691 commonSkyPix = registry.dimensions.commonSkyPix.pixelization
1692 index = 12288
1693 child_ranges_small = lsst.sphgeom.RangeSet(index).scaled(4)
1694 assert htm6.universe().contains(child_ranges_small)
1695 child_regions_small = [htm6.triangle(i) for i in unpack_range_set(child_ranges_small)]
1696 parent_region_small = lsst.sphgeom.ConvexPolygon(
1697 list(itertools.chain.from_iterable(c.getVertices() for c in child_regions_small))
1698 )
1699 assert all(parent_region_small.contains(c) for c in child_regions_small)
1700 # Make a larger version of each child region, defined to be the set of
1701 # htm6 trixels that overlap the original's bounding circle. Make a new
1702 # parent that's the convex hull of the new children.
1703 child_regions_large = [
1704 range_set_hull(htm6.envelope(c.getBoundingCircle()), htm6) for c in child_regions_small
1705 ]
1706 assert all(large.contains(small) for large, small in zip(child_regions_large, child_regions_small))
1707 parent_region_large = lsst.sphgeom.ConvexPolygon(
1708 list(itertools.chain.from_iterable(c.getVertices() for c in child_regions_large))
1709 )
1710 assert all(parent_region_large.contains(c) for c in child_regions_large)
1711 assert parent_region_large.contains(parent_region_small)
1712 assert not parent_region_small.contains(parent_region_large)
1713 assert not all(parent_region_small.contains(c) for c in child_regions_large)
1714 # Find some commonSkyPix indices that overlap the large regions but not
1715 # overlap the small regions. We use commonSkyPix here to make sure the
1716 # real tests later involve what's in the database, not just post-query
1717 # region filtering.
1718 child_difference_indices = []
1719 for large, small in zip(child_regions_large, child_regions_small):
1720 difference = list(unpack_range_set(commonSkyPix.envelope(large) - commonSkyPix.envelope(small)))
1721 assert difference, "if this is empty, we can't test anything useful with these regions"
1722 assert all(
1723 not commonSkyPix.triangle(d).isDisjointFrom(large)
1724 and commonSkyPix.triangle(d).isDisjointFrom(small)
1725 for d in difference
1726 )
1727 child_difference_indices.append(difference)
1728 parent_difference_indices = list(
1729 unpack_range_set(
1730 commonSkyPix.envelope(parent_region_large) - commonSkyPix.envelope(parent_region_small)
1731 )
1732 )
1733 assert parent_difference_indices, "if this is empty, we can't test anything useful with these regions"
1734 assert all(
1735 (
1736 not commonSkyPix.triangle(d).isDisjointFrom(parent_region_large)
1737 and commonSkyPix.triangle(d).isDisjointFrom(parent_region_small)
1738 )
1739 for d in parent_difference_indices
1740 )
1741 # Now that we've finally got those regions, we'll insert the large ones
1742 # as tract/patch dimension records.
1743 skymap_name = "testing_v1"
1744 registry.insertDimensionData(
1745 "skymap",
1746 {
1747 "name": skymap_name,
1748 "hash": bytes([42]),
1749 "tract_max": 1,
1750 "patch_nx_max": 2,
1751 "patch_ny_max": 2,
1752 },
1753 )
1754 registry.insertDimensionData("tract", {"skymap": skymap_name, "id": 0, "region": parent_region_large})
1755 registry.insertDimensionData(
1756 "patch",
1757 *[
1758 {"skymap": skymap_name, "tract": 0, "id": n, "cell_x": n % 2, "cell_y": n // 2, "region": c}
1759 for n, c in enumerate(child_regions_large)
1760 ],
1761 )
1762 # Add at dataset that uses these dimensions to make sure that modifying
1763 # them doesn't disrupt foreign keys (need to make sure DB doesn't
1764 # implement insert with replace=True as delete-then-insert).
1765 dataset_type = DatasetType(
1766 "coadd",
1767 dimensions=["tract", "patch"],
1768 universe=registry.dimensions,
1769 storageClass="Exposure",
1770 )
1771 registry.registerDatasetType(dataset_type)
1772 registry.registerCollection("the_run", CollectionType.RUN)
1773 registry.insertDatasets(
1774 dataset_type,
1775 [{"skymap": skymap_name, "tract": 0, "patch": 2}],
1776 run="the_run",
1777 )
1778 # Query for tracts and patches that overlap some "difference" htm9
1779 # pixels; there should be overlaps, because the database has
1780 # the "large" suite of regions.
1781 self.assertEqual(
1782 {0},
1783 {
1784 data_id["tract"]
1785 for data_id in registry.queryDataIds(
1786 ["tract"],
1787 skymap=skymap_name,
1788 dataId={registry.dimensions.commonSkyPix.name: parent_difference_indices[0]},
1789 )
1790 },
1791 )
1792 for patch_id, patch_difference_indices in enumerate(child_difference_indices):
1793 self.assertIn(
1794 patch_id,
1795 {
1796 data_id["patch"]
1797 for data_id in registry.queryDataIds(
1798 ["patch"],
1799 skymap=skymap_name,
1800 dataId={registry.dimensions.commonSkyPix.name: patch_difference_indices[0]},
1801 )
1802 },
1803 )
1804 # Use sync to update the tract region and insert to update the patch
1805 # regions, to the "small" suite.
1806 updated = registry.syncDimensionData(
1807 "tract",
1808 {"skymap": skymap_name, "id": 0, "region": parent_region_small},
1809 update=True,
1810 )
1811 self.assertEqual(updated, {"region": parent_region_large})
1812 registry.insertDimensionData(
1813 "patch",
1814 *[
1815 {"skymap": skymap_name, "tract": 0, "id": n, "cell_x": n % 2, "cell_y": n // 2, "region": c}
1816 for n, c in enumerate(child_regions_small)
1817 ],
1818 replace=True,
1819 )
1820 # Query again; there now should be no such overlaps, because the
1821 # database has the "small" suite of regions.
1822 self.assertFalse(
1823 set(
1824 registry.queryDataIds(
1825 ["tract"],
1826 skymap=skymap_name,
1827 dataId={registry.dimensions.commonSkyPix.name: parent_difference_indices[0]},
1828 )
1829 )
1830 )
1831 for patch_id, patch_difference_indices in enumerate(child_difference_indices):
1832 self.assertNotIn(
1833 patch_id,
1834 {
1835 data_id["patch"]
1836 for data_id in registry.queryDataIds(
1837 ["patch"],
1838 skymap=skymap_name,
1839 dataId={registry.dimensions.commonSkyPix.name: patch_difference_indices[0]},
1840 )
1841 },
1842 )
1843 # Update back to the large regions and query one more time.
1844 updated = registry.syncDimensionData(
1845 "tract",
1846 {"skymap": skymap_name, "id": 0, "region": parent_region_large},
1847 update=True,
1848 )
1849 self.assertEqual(updated, {"region": parent_region_small})
1850 registry.insertDimensionData(
1851 "patch",
1852 *[
1853 {"skymap": skymap_name, "tract": 0, "id": n, "cell_x": n % 2, "cell_y": n // 2, "region": c}
1854 for n, c in enumerate(child_regions_large)
1855 ],
1856 replace=True,
1857 )
1858 self.assertEqual(
1859 {0},
1860 {
1861 data_id["tract"]
1862 for data_id in registry.queryDataIds(
1863 ["tract"],
1864 skymap=skymap_name,
1865 dataId={registry.dimensions.commonSkyPix.name: parent_difference_indices[0]},
1866 )
1867 },
1868 )
1869 for patch_id, patch_difference_indices in enumerate(child_difference_indices):
1870 self.assertIn(
1871 patch_id,
1872 {
1873 data_id["patch"]
1874 for data_id in registry.queryDataIds(
1875 ["patch"],
1876 skymap=skymap_name,
1877 dataId={registry.dimensions.commonSkyPix.name: patch_difference_indices[0]},
1878 )
1879 },
1880 )
1882 def testCalibrationCollections(self):
1883 """Test operations on `~CollectionType.CALIBRATION` collections,
1884 including `Registry.certify`, `Registry.decertify`, and
1885 `Registry.findDataset`.
1886 """
1887 # Setup - make a Registry, fill it with some datasets in
1888 # non-calibration collections.
1889 registry = self.makeRegistry()
1890 self.loadData(registry, "base.yaml")
1891 self.loadData(registry, "datasets.yaml")
1892 # Set up some timestamps.
1893 t1 = astropy.time.Time("2020-01-01T01:00:00", format="isot", scale="tai")
1894 t2 = astropy.time.Time("2020-01-01T02:00:00", format="isot", scale="tai")
1895 t3 = astropy.time.Time("2020-01-01T03:00:00", format="isot", scale="tai")
1896 t4 = astropy.time.Time("2020-01-01T04:00:00", format="isot", scale="tai")
1897 t5 = astropy.time.Time("2020-01-01T05:00:00", format="isot", scale="tai")
1898 allTimespans = [
1899 Timespan(a, b) for a, b in itertools.combinations([None, t1, t2, t3, t4, t5, None], r=2)
1900 ]
1901 # Get references to some datasets.
1902 bias2a = registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_g")
1903 bias3a = registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_g")
1904 bias2b = registry.findDataset("bias", instrument="Cam1", detector=2, collections="imported_r")
1905 bias3b = registry.findDataset("bias", instrument="Cam1", detector=3, collections="imported_r")
1906 # Register the main calibration collection we'll be working with.
1907 collection = "Cam1/calibs/default"
1908 registry.registerCollection(collection, type=CollectionType.CALIBRATION)
1909 # Cannot associate into a calibration collection (no timespan).
1910 with self.assertRaises(CollectionTypeError):
1911 registry.associate(collection, [bias2a])
1912 # Certify 2a dataset with [t2, t4) validity.
1913 registry.certify(collection, [bias2a], Timespan(begin=t2, end=t4))
1914 # We should not be able to certify 2b with anything overlapping that
1915 # window.
1916 with self.assertRaises(ConflictingDefinitionError):
1917 registry.certify(collection, [bias2b], Timespan(begin=None, end=t3))
1918 with self.assertRaises(ConflictingDefinitionError):
1919 registry.certify(collection, [bias2b], Timespan(begin=None, end=t5))
1920 with self.assertRaises(ConflictingDefinitionError):
1921 registry.certify(collection, [bias2b], Timespan(begin=t1, end=t3))
1922 with self.assertRaises(ConflictingDefinitionError):
1923 registry.certify(collection, [bias2b], Timespan(begin=t1, end=t5))
1924 with self.assertRaises(ConflictingDefinitionError):
1925 registry.certify(collection, [bias2b], Timespan(begin=t1, end=None))
1926 with self.assertRaises(ConflictingDefinitionError):
1927 registry.certify(collection, [bias2b], Timespan(begin=t2, end=t3))
1928 with self.assertRaises(ConflictingDefinitionError):
1929 registry.certify(collection, [bias2b], Timespan(begin=t2, end=t5))
1930 with self.assertRaises(ConflictingDefinitionError):
1931 registry.certify(collection, [bias2b], Timespan(begin=t2, end=None))
1932 # We should be able to certify 3a with a range overlapping that window,
1933 # because it's for a different detector.
1934 # We'll certify 3a over [t1, t3).
1935 registry.certify(collection, [bias3a], Timespan(begin=t1, end=t3))
1936 # Now we'll certify 2b and 3b together over [t4, ∞).
1937 registry.certify(collection, [bias2b, bias3b], Timespan(begin=t4, end=None))
1939 # Fetch all associations and check that they are what we expect.
1940 self.assertCountEqual(
1941 list(
1942 registry.queryDatasetAssociations(
1943 "bias",
1944 collections=[collection, "imported_g", "imported_r"],
1945 )
1946 ),
1947 [
1948 DatasetAssociation(
1949 ref=registry.findDataset("bias", instrument="Cam1", detector=1, collections="imported_g"),
1950 collection="imported_g",
1951 timespan=None,
1952 ),
1953 DatasetAssociation(
1954 ref=registry.findDataset("bias", instrument="Cam1", detector=4, collections="imported_r"),
1955 collection="imported_r",
1956 timespan=None,
1957 ),
1958 DatasetAssociation(ref=bias2a, collection="imported_g", timespan=None),
1959 DatasetAssociation(ref=bias3a, collection="imported_g", timespan=None),
1960 DatasetAssociation(ref=bias2b, collection="imported_r", timespan=None),
1961 DatasetAssociation(ref=bias3b, collection="imported_r", timespan=None),
1962 DatasetAssociation(ref=bias2a, collection=collection, timespan=Timespan(begin=t2, end=t4)),
1963 DatasetAssociation(ref=bias3a, collection=collection, timespan=Timespan(begin=t1, end=t3)),
1964 DatasetAssociation(ref=bias2b, collection=collection, timespan=Timespan(begin=t4, end=None)),
1965 DatasetAssociation(ref=bias3b, collection=collection, timespan=Timespan(begin=t4, end=None)),
1966 ],
1967 )
1969 class Ambiguous:
1970 """Tag class to denote lookups that should be ambiguous."""
1972 pass
1974 def assertLookup(
1975 detector: int, timespan: Timespan, expected: Optional[Union[DatasetRef, Type[Ambiguous]]]
1976 ) -> None:
1977 """Local function that asserts that a bias lookup returns the given
1978 expected result.
1979 """
1980 if expected is Ambiguous:
1981 with self.assertRaises(RuntimeError):
1982 registry.findDataset(
1983 "bias",
1984 collections=collection,
1985 instrument="Cam1",
1986 detector=detector,
1987 timespan=timespan,
1988 )
1989 else:
1990 self.assertEqual(
1991 expected,
1992 registry.findDataset(
1993 "bias",
1994 collections=collection,
1995 instrument="Cam1",
1996 detector=detector,
1997 timespan=timespan,
1998 ),
1999 )
2001 # Systematically test lookups against expected results.
2002 assertLookup(detector=2, timespan=Timespan(None, t1), expected=None)
2003 assertLookup(detector=2, timespan=Timespan(None, t2), expected=None)
2004 assertLookup(detector=2, timespan=Timespan(None, t3), expected=bias2a)
2005 assertLookup(detector=2, timespan=Timespan(None, t4), expected=bias2a)
2006 assertLookup(detector=2, timespan=Timespan(None, t5), expected=Ambiguous)
2007 assertLookup(detector=2, timespan=Timespan(None, None), expected=Ambiguous)
2008 assertLookup(detector=2, timespan=Timespan(t1, t2), expected=None)
2009 assertLookup(detector=2, timespan=Timespan(t1, t3), expected=bias2a)
2010 assertLookup(detector=2, timespan=Timespan(t1, t4), expected=bias2a)
2011 assertLookup(detector=2, timespan=Timespan(t1, t5), expected=Ambiguous)
2012 assertLookup(detector=2, timespan=Timespan(t1, None), expected=Ambiguous)
2013 assertLookup(detector=2, timespan=Timespan(t2, t3), expected=bias2a)
2014 assertLookup(detector=2, timespan=Timespan(t2, t4), expected=bias2a)
2015 assertLookup(detector=2, timespan=Timespan(t2, t5), expected=Ambiguous)
2016 assertLookup(detector=2, timespan=Timespan(t2, None), expected=Ambiguous)
2017 assertLookup(detector=2, timespan=Timespan(t3, t4), expected=bias2a)
2018 assertLookup(detector=2, timespan=Timespan(t3, t5), expected=Ambiguous)
2019 assertLookup(detector=2, timespan=Timespan(t3, None), expected=Ambiguous)
2020 assertLookup(detector=2, timespan=Timespan(t4, t5), expected=bias2b)
2021 assertLookup(detector=2, timespan=Timespan(t4, None), expected=bias2b)
2022 assertLookup(detector=2, timespan=Timespan(t5, None), expected=bias2b)
2023 assertLookup(detector=3, timespan=Timespan(None, t1), expected=None)
2024 assertLookup(detector=3, timespan=Timespan(None, t2), expected=bias3a)
2025 assertLookup(detector=3, timespan=Timespan(None, t3), expected=bias3a)
2026 assertLookup(detector=3, timespan=Timespan(None, t4), expected=bias3a)
2027 assertLookup(detector=3, timespan=Timespan(None, t5), expected=Ambiguous)
2028 assertLookup(detector=3, timespan=Timespan(None, None), expected=Ambiguous)
2029 assertLookup(detector=3, timespan=Timespan(t1, t2), expected=bias3a)
2030 assertLookup(detector=3, timespan=Timespan(t1, t3), expected=bias3a)
2031 assertLookup(detector=3, timespan=Timespan(t1, t4), expected=bias3a)
2032 assertLookup(detector=3, timespan=Timespan(t1, t5), expected=Ambiguous)
2033 assertLookup(detector=3, timespan=Timespan(t1, None), expected=Ambiguous)
2034 assertLookup(detector=3, timespan=Timespan(t2, t3), expected=bias3a)
2035 assertLookup(detector=3, timespan=Timespan(t2, t4), expected=bias3a)
2036 assertLookup(detector=3, timespan=Timespan(t2, t5), expected=Ambiguous)
2037 assertLookup(detector=3, timespan=Timespan(t2, None), expected=Ambiguous)
2038 assertLookup(detector=3, timespan=Timespan(t3, t4), expected=None)
2039 assertLookup(detector=3, timespan=Timespan(t3, t5), expected=bias3b)
2040 assertLookup(detector=3, timespan=Timespan(t3, None), expected=bias3b)
2041 assertLookup(detector=3, timespan=Timespan(t4, t5), expected=bias3b)
2042 assertLookup(detector=3, timespan=Timespan(t4, None), expected=bias3b)
2043 assertLookup(detector=3, timespan=Timespan(t5, None), expected=bias3b)
2045 # Decertify [t3, t5) for all data IDs, and do test lookups again.
2046 # This should truncate bias2a to [t2, t3), leave bias3a unchanged at
2047 # [t1, t3), and truncate bias2b and bias3b to [t5, ∞).
2048 registry.decertify(collection=collection, datasetType="bias", timespan=Timespan(t3, t5))
2049 assertLookup(detector=2, timespan=Timespan(None, t1), expected=None)
2050 assertLookup(detector=2, timespan=Timespan(None, t2), expected=None)
2051 assertLookup(detector=2, timespan=Timespan(None, t3), expected=bias2a)
2052 assertLookup(detector=2, timespan=Timespan(None, t4), expected=bias2a)
2053 assertLookup(detector=2, timespan=Timespan(None, t5), expected=bias2a)
2054 assertLookup(detector=2, timespan=Timespan(None, None), expected=Ambiguous)
2055 assertLookup(detector=2, timespan=Timespan(t1, t2), expected=None)
2056 assertLookup(detector=2, timespan=Timespan(t1, t3), expected=bias2a)
2057 assertLookup(detector=2, timespan=Timespan(t1, t4), expected=bias2a)
2058 assertLookup(detector=2, timespan=Timespan(t1, t5), expected=bias2a)
2059 assertLookup(detector=2, timespan=Timespan(t1, None), expected=Ambiguous)
2060 assertLookup(detector=2, timespan=Timespan(t2, t3), expected=bias2a)
2061 assertLookup(detector=2, timespan=Timespan(t2, t4), expected=bias2a)
2062 assertLookup(detector=2, timespan=Timespan(t2, t5), expected=bias2a)
2063 assertLookup(detector=2, timespan=Timespan(t2, None), expected=Ambiguous)
2064 assertLookup(detector=2, timespan=Timespan(t3, t4), expected=None)
2065 assertLookup(detector=2, timespan=Timespan(t3, t5), expected=None)
2066 assertLookup(detector=2, timespan=Timespan(t3, None), expected=bias2b)
2067 assertLookup(detector=2, timespan=Timespan(t4, t5), expected=None)
2068 assertLookup(detector=2, timespan=Timespan(t4, None), expected=bias2b)
2069 assertLookup(detector=2, timespan=Timespan(t5, None), expected=bias2b)
2070 assertLookup(detector=3, timespan=Timespan(None, t1), expected=None)
2071 assertLookup(detector=3, timespan=Timespan(None, t2), expected=bias3a)
2072 assertLookup(detector=3, timespan=Timespan(None, t3), expected=bias3a)
2073 assertLookup(detector=3, timespan=Timespan(None, t4), expected=bias3a)
2074 assertLookup(detector=3, timespan=Timespan(None, t5), expected=bias3a)
2075 assertLookup(detector=3, timespan=Timespan(None, None), expected=Ambiguous)
2076 assertLookup(detector=3, timespan=Timespan(t1, t2), expected=bias3a)
2077 assertLookup(detector=3, timespan=Timespan(t1, t3), expected=bias3a)
2078 assertLookup(detector=3, timespan=Timespan(t1, t4), expected=bias3a)
2079 assertLookup(detector=3, timespan=Timespan(t1, t5), expected=bias3a)
2080 assertLookup(detector=3, timespan=Timespan(t1, None), expected=Ambiguous)
2081 assertLookup(detector=3, timespan=Timespan(t2, t3), expected=bias3a)
2082 assertLookup(detector=3, timespan=Timespan(t2, t4), expected=bias3a)
2083 assertLookup(detector=3, timespan=Timespan(t2, t5), expected=bias3a)
2084 assertLookup(detector=3, timespan=Timespan(t2, None), expected=Ambiguous)
2085 assertLookup(detector=3, timespan=Timespan(t3, t4), expected=None)
2086 assertLookup(detector=3, timespan=Timespan(t3, t5), expected=None)
2087 assertLookup(detector=3, timespan=Timespan(t3, None), expected=bias3b)
2088 assertLookup(detector=3, timespan=Timespan(t4, t5), expected=None)
2089 assertLookup(detector=3, timespan=Timespan(t4, None), expected=bias3b)
2090 assertLookup(detector=3, timespan=Timespan(t5, None), expected=bias3b)
2092 # Decertify everything, this time with explicit data IDs, then check
2093 # that no lookups succeed.
2094 registry.decertify(
2095 collection,
2096 "bias",
2097 Timespan(None, None),
2098 dataIds=[
2099 dict(instrument="Cam1", detector=2),
2100 dict(instrument="Cam1", detector=3),
2101 ],
2102 )
2103 for detector in (2, 3):
2104 for timespan in allTimespans:
2105 assertLookup(detector=detector, timespan=timespan, expected=None)
2106 # Certify bias2a and bias3a over (-∞, ∞), check that all lookups return
2107 # those.
2108 registry.certify(
2109 collection,
2110 [bias2a, bias3a],
2111 Timespan(None, None),
2112 )
2113 for timespan in allTimespans:
2114 assertLookup(detector=2, timespan=timespan, expected=bias2a)
2115 assertLookup(detector=3, timespan=timespan, expected=bias3a)
2116 # Decertify just bias2 over [t2, t4).
2117 # This should split a single certification row into two (and leave the
2118 # other existing row, for bias3a, alone).
2119 registry.decertify(
2120 collection, "bias", Timespan(t2, t4), dataIds=[dict(instrument="Cam1", detector=2)]
2121 )
2122 for timespan in allTimespans:
2123 assertLookup(detector=3, timespan=timespan, expected=bias3a)
2124 overlapsBefore = timespan.overlaps(Timespan(None, t2))
2125 overlapsAfter = timespan.overlaps(Timespan(t4, None))
2126 if overlapsBefore and overlapsAfter:
2127 expected = Ambiguous
2128 elif overlapsBefore or overlapsAfter:
2129 expected = bias2a
2130 else:
2131 expected = None
2132 assertLookup(detector=2, timespan=timespan, expected=expected)
2134 def testSkipCalibs(self):
2135 """Test how queries handle skipping of calibration collections."""
2136 registry = self.makeRegistry()
2137 self.loadData(registry, "base.yaml")
2138 self.loadData(registry, "datasets.yaml")
2140 coll_calib = "Cam1/calibs/default"
2141 registry.registerCollection(coll_calib, type=CollectionType.CALIBRATION)
2143 # Add all biases to the calibration collection.
2144 # Without this, the logic that prunes dataset subqueries based on
2145 # datasetType-collection summary information will fire before the logic
2146 # we want to test below. This is a good thing (it avoids the dreaded
2147 # NotImplementedError a bit more often) everywhere but here.
2148 registry.certify(coll_calib, registry.queryDatasets("bias", collections=...), Timespan(None, None))
2150 coll_list = [coll_calib, "imported_g", "imported_r"]
2151 chain = "Cam1/chain"
2152 registry.registerCollection(chain, type=CollectionType.CHAINED)
2153 registry.setCollectionChain(chain, coll_list)
2155 # explicit list will raise if findFirst=True or there are temporal
2156 # dimensions
2157 with self.assertRaises(NotImplementedError):
2158 registry.queryDatasets("bias", collections=coll_list, findFirst=True)
2159 with self.assertRaises(NotImplementedError):
2160 registry.queryDataIds(
2161 ["instrument", "detector", "exposure"], datasets="bias", collections=coll_list
2162 ).count()
2164 # chain will skip
2165 datasets = list(registry.queryDatasets("bias", collections=chain))
2166 self.assertGreater(len(datasets), 0)
2168 dataIds = list(registry.queryDataIds(["instrument", "detector"], datasets="bias", collections=chain))
2169 self.assertGreater(len(dataIds), 0)
2171 # glob will skip too
2172 datasets = list(registry.queryDatasets("bias", collections="*d*"))
2173 self.assertGreater(len(datasets), 0)
2175 # regular expression will skip too
2176 pattern = re.compile(".*")
2177 datasets = list(registry.queryDatasets("bias", collections=pattern))
2178 self.assertGreater(len(datasets), 0)
2180 # ellipsis should work as usual
2181 datasets = list(registry.queryDatasets("bias", collections=...))
2182 self.assertGreater(len(datasets), 0)
2184 # few tests with findFirst
2185 datasets = list(registry.queryDatasets("bias", collections=chain, findFirst=True))
2186 self.assertGreater(len(datasets), 0)
2188 def testIngestTimeQuery(self):
2190 registry = self.makeRegistry()
2191 self.loadData(registry, "base.yaml")
2192 dt0 = datetime.utcnow()
2193 self.loadData(registry, "datasets.yaml")
2194 dt1 = datetime.utcnow()
2196 datasets = list(registry.queryDatasets(..., collections=...))
2197 len0 = len(datasets)
2198 self.assertGreater(len0, 0)
2200 where = "ingest_date > T'2000-01-01'"
2201 datasets = list(registry.queryDatasets(..., collections=..., where=where))
2202 len1 = len(datasets)
2203 self.assertEqual(len0, len1)
2205 # no one will ever use this piece of software in 30 years
2206 where = "ingest_date > T'2050-01-01'"
2207 datasets = list(registry.queryDatasets(..., collections=..., where=where))
2208 len2 = len(datasets)
2209 self.assertEqual(len2, 0)
2211 # Check more exact timing to make sure there is no 37 seconds offset
2212 # (after fixing DM-30124). SQLite time precision is 1 second, make
2213 # sure that we don't test with higher precision.
2214 tests = [
2215 # format: (timestamp, operator, expected_len)
2216 (dt0 - timedelta(seconds=1), ">", len0),
2217 (dt0 - timedelta(seconds=1), "<", 0),
2218 (dt1 + timedelta(seconds=1), "<", len0),
2219 (dt1 + timedelta(seconds=1), ">", 0),
2220 ]
2221 for dt, op, expect_len in tests:
2222 dt_str = dt.isoformat(sep=" ")
2224 where = f"ingest_date {op} T'{dt_str}'"
2225 datasets = list(registry.queryDatasets(..., collections=..., where=where))
2226 self.assertEqual(len(datasets), expect_len)
2228 # same with bind using datetime or astropy Time
2229 where = f"ingest_date {op} ingest_time"
2230 datasets = list(
2231 registry.queryDatasets(..., collections=..., where=where, bind={"ingest_time": dt})
2232 )
2233 self.assertEqual(len(datasets), expect_len)
2235 dt_astropy = astropy.time.Time(dt, format="datetime")
2236 datasets = list(
2237 registry.queryDatasets(..., collections=..., where=where, bind={"ingest_time": dt_astropy})
2238 )
2239 self.assertEqual(len(datasets), expect_len)
2241 def testTimespanQueries(self):
2242 """Test query expressions involving timespans."""
2243 registry = self.makeRegistry()
2244 self.loadData(registry, "hsc-rc2-subset.yaml")
2245 # All exposures in the database; mapping from ID to timespan.
2246 visits = {record.id: record.timespan for record in registry.queryDimensionRecords("visit")}
2247 # Just those IDs, sorted (which is also temporal sorting, because HSC
2248 # exposure IDs are monotonically increasing).
2249 ids = sorted(visits.keys())
2250 self.assertGreater(len(ids), 20)
2251 # Pick some quasi-random indexes into `ids` to play with.
2252 i1 = int(len(ids) * 0.1)
2253 i2 = int(len(ids) * 0.3)
2254 i3 = int(len(ids) * 0.6)
2255 i4 = int(len(ids) * 0.8)
2256 # Extract some times from those: just before the beginning of i1 (which
2257 # should be after the end of the exposure before), exactly the
2258 # beginning of i2, just after the beginning of i3 (and before its end),
2259 # and the exact end of i4.
2260 t1 = visits[ids[i1]].begin - astropy.time.TimeDelta(1.0, format="sec")
2261 self.assertGreater(t1, visits[ids[i1 - 1]].end)
2262 t2 = visits[ids[i2]].begin
2263 t3 = visits[ids[i3]].begin + astropy.time.TimeDelta(1.0, format="sec")
2264 self.assertLess(t3, visits[ids[i3]].end)
2265 t4 = visits[ids[i4]].end
2266 # Make sure those are actually in order.
2267 self.assertEqual([t1, t2, t3, t4], sorted([t4, t3, t2, t1]))
2269 bind = {
2270 "t1": t1,
2271 "t2": t2,
2272 "t3": t3,
2273 "t4": t4,
2274 "ts23": Timespan(t2, t3),
2275 }
2277 def query(where):
2278 """Helper function that queries for visit data IDs and returns
2279 results as a sorted, deduplicated list of visit IDs.
2280 """
2281 return sorted(
2282 {
2283 dataId["visit"]
2284 for dataId in registry.queryDataIds("visit", instrument="HSC", bind=bind, where=where)
2285 }
2286 )
2288 # Try a bunch of timespan queries, mixing up the bounds themselves,
2289 # where they appear in the expression, and how we get the timespan into
2290 # the expression.
2292 # t1 is before the start of i1, so this should not include i1.
2293 self.assertEqual(ids[:i1], query("visit.timespan OVERLAPS (null, t1)"))
2294 # t2 is exactly at the start of i2, but ends are exclusive, so these
2295 # should not include i2.
2296 self.assertEqual(ids[i1:i2], query("(t1, t2) OVERLAPS visit.timespan"))
2297 self.assertEqual(ids[:i2], query("visit.timespan < (t2, t4)"))
2298 # t3 is in the middle of i3, so this should include i3.
2299 self.assertEqual(ids[i2 : i3 + 1], query("visit.timespan OVERLAPS ts23"))
2300 # This one should not include t3 by the same reasoning.
2301 self.assertEqual(ids[i3 + 1 :], query("visit.timespan > (t1, t3)"))
2302 # t4 is exactly at the end of i4, so this should include i4.
2303 self.assertEqual(ids[i3 : i4 + 1], query(f"visit.timespan OVERLAPS (T'{t3.tai.isot}', t4)"))
2304 # i4's upper bound of t4 is exclusive so this should not include t4.
2305 self.assertEqual(ids[i4 + 1 :], query("visit.timespan OVERLAPS (t4, NULL)"))
2307 # Now some timespan vs. time scalar queries.
2308 self.assertEqual(ids[:i2], query("visit.timespan < t2"))
2309 self.assertEqual(ids[:i2], query("t2 > visit.timespan"))
2310 self.assertEqual(ids[i3 + 1 :], query("visit.timespan > t3"))
2311 self.assertEqual(ids[i3 + 1 :], query("t3 < visit.timespan"))
2312 self.assertEqual(ids[i3 : i3 + 1], query("visit.timespan OVERLAPS t3"))
2313 self.assertEqual(ids[i3 : i3 + 1], query(f"T'{t3.tai.isot}' OVERLAPS visit.timespan"))
2315 # Empty timespans should not overlap anything.
2316 self.assertEqual([], query("visit.timespan OVERLAPS (t3, t2)"))
2318 def testCollectionSummaries(self):
2319 """Test recording and retrieval of collection summaries."""
2320 self.maxDiff = None
2321 registry = self.makeRegistry()
2322 # Importing datasets from yaml should go through the code path where
2323 # we update collection summaries as we insert datasets.
2324 self.loadData(registry, "base.yaml")
2325 self.loadData(registry, "datasets.yaml")
2326 flat = registry.getDatasetType("flat")
2327 expected1 = CollectionSummary.makeEmpty(registry.dimensions)
2328 expected1.datasetTypes.add(registry.getDatasetType("bias"))
2329 expected1.datasetTypes.add(flat)
2330 expected1.dimensions.update_extract(
2331 DataCoordinate.standardize(instrument="Cam1", universe=registry.dimensions)
2332 )
2333 self.assertEqual(registry.getCollectionSummary("imported_g"), expected1)
2334 self.assertEqual(registry.getCollectionSummary("imported_r"), expected1)
2335 # Create a chained collection with both of the imported runs; the
2336 # summary should be the same, because it's a union with itself.
2337 chain = "chain"
2338 registry.registerCollection(chain, CollectionType.CHAINED)
2339 registry.setCollectionChain(chain, ["imported_r", "imported_g"])
2340 self.assertEqual(registry.getCollectionSummary(chain), expected1)
2341 # Associate flats only into a tagged collection and a calibration
2342 # collection to check summaries of those.
2343 tag = "tag"
2344 registry.registerCollection(tag, CollectionType.TAGGED)
2345 registry.associate(tag, registry.queryDatasets(flat, collections="imported_g"))
2346 calibs = "calibs"
2347 registry.registerCollection(calibs, CollectionType.CALIBRATION)
2348 registry.certify(
2349 calibs, registry.queryDatasets(flat, collections="imported_g"), timespan=Timespan(None, None)
2350 )
2351 expected2 = expected1.copy()
2352 expected2.datasetTypes.discard("bias")
2353 self.assertEqual(registry.getCollectionSummary(tag), expected2)
2354 self.assertEqual(registry.getCollectionSummary(calibs), expected2)
2355 # Explicitly calling Registry.refresh() should load those same
2356 # summaries, via a totally different code path.
2357 registry.refresh()
2358 self.assertEqual(registry.getCollectionSummary("imported_g"), expected1)
2359 self.assertEqual(registry.getCollectionSummary("imported_r"), expected1)
2360 self.assertEqual(registry.getCollectionSummary(tag), expected2)
2361 self.assertEqual(registry.getCollectionSummary(calibs), expected2)
2363 def testBindInQueryDatasets(self):
2364 """Test that the bind parameter is correctly forwarded in
2365 queryDatasets recursion.
2366 """
2367 registry = self.makeRegistry()
2368 # Importing datasets from yaml should go through the code path where
2369 # we update collection summaries as we insert datasets.
2370 self.loadData(registry, "base.yaml")
2371 self.loadData(registry, "datasets.yaml")
2372 self.assertEqual(
2373 set(registry.queryDatasets("flat", band="r", collections=...)),
2374 set(registry.queryDatasets("flat", where="band=my_band", bind={"my_band": "r"}, collections=...)),
2375 )
2377 def testQueryResultSummaries(self):
2378 """Test summary methods like `count`, `any`, and `explain_no_results`
2379 on `DataCoordinateQueryResults` and `DatasetQueryResults`
2380 """
2381 registry = self.makeRegistry()
2382 self.loadData(registry, "base.yaml")
2383 self.loadData(registry, "datasets.yaml")
2384 self.loadData(registry, "spatial.yaml")
2385 # Default test dataset has two collections, each with both flats and
2386 # biases. Add a new collection with only biases.
2387 registry.registerCollection("biases", CollectionType.TAGGED)
2388 registry.associate("biases", registry.queryDatasets("bias", collections=["imported_g"]))
2389 # First query yields two results, and involves no postprocessing.
2390 query1 = registry.queryDataIds(["physical_filter"], band="r")
2391 self.assertTrue(query1.any(execute=False, exact=False))
2392 self.assertTrue(query1.any(execute=True, exact=False))
2393 self.assertTrue(query1.any(execute=True, exact=True))
2394 self.assertEqual(query1.count(exact=False), 2)
2395 self.assertEqual(query1.count(exact=True), 2)
2396 self.assertFalse(list(query1.explain_no_results()))
2397 # Second query should yield no results, but this isn't detectable
2398 # unless we actually run a query.
2399 query2 = registry.queryDataIds(["physical_filter"], band="h")
2400 self.assertTrue(query2.any(execute=False, exact=False))
2401 self.assertFalse(query2.any(execute=True, exact=False))
2402 self.assertFalse(query2.any(execute=True, exact=True))
2403 self.assertEqual(query2.count(exact=False), 0)
2404 self.assertEqual(query2.count(exact=True), 0)
2405 self.assertFalse(list(query2.explain_no_results()))
2406 # These queries yield no results due to various problems that can be
2407 # spotted prior to execution, yielding helpful diagnostics.
2408 for query, snippets in [
2409 (
2410 # Dataset type name doesn't match any existing dataset types.
2411 registry.queryDatasets("nonexistent", collections=...),
2412 ["nonexistent"],
2413 ),
2414 (
2415 # Dataset type name doesn't match any existing dataset types.
2416 registry.queryDataIds(["detector"], datasets=["nonexistent"], collections=...),
2417 ["nonexistent"],
2418 ),
2419 (
2420 # Dataset type object isn't registered.
2421 registry.queryDatasets(
2422 DatasetType(
2423 "nonexistent",
2424 dimensions=["instrument"],
2425 universe=registry.dimensions,
2426 storageClass="Image",
2427 ),
2428 collections=...,
2429 ),
2430 ["nonexistent"],
2431 ),
2432 (
2433 # No datasets of this type in this collection.
2434 registry.queryDatasets("flat", collections=["biases"]),
2435 ["flat", "biases"],
2436 ),
2437 (
2438 # No collections matching at all.
2439 registry.queryDatasets("flat", collections=re.compile("potato.+")),
2440 ["potato"],
2441 ),
2442 (
2443 # Dataset type name doesn't match any existing dataset types.
2444 registry.queryDimensionRecords("detector", datasets=["nonexistent"], collections=...),
2445 ["nonexistent"],
2446 ),
2447 ]:
2449 self.assertFalse(query.any(execute=False, exact=False))
2450 self.assertFalse(query.any(execute=True, exact=False))
2451 self.assertFalse(query.any(execute=True, exact=True))
2452 self.assertEqual(query.count(exact=False), 0)
2453 self.assertEqual(query.count(exact=True), 0)
2454 messages = list(query.explain_no_results())
2455 self.assertTrue(messages)
2456 # Want all expected snippets to appear in at least one message.
2457 self.assertTrue(
2458 any(
2459 all(snippet in message for snippet in snippets) for message in query.explain_no_results()
2460 ),
2461 messages,
2462 )
2464 # These queries yield no results due to problems that can be identified
2465 # by cheap follow-up queries, yielding helpful diagnostics.
2466 for query, snippets in [
2467 (
2468 # No records for one of the involved dimensions.
2469 registry.queryDataIds(["subfilter"]),
2470 ["dimension records", "subfilter"],
2471 ),
2472 (
2473 # No records for one of the involved dimensions.
2474 registry.queryDimensionRecords("subfilter"),
2475 ["dimension records", "subfilter"],
2476 ),
2477 ]:
2478 self.assertFalse(query.any(execute=True, exact=False))
2479 self.assertFalse(query.any(execute=True, exact=True))
2480 self.assertEqual(query.count(exact=True), 0)
2481 messages = list(query.explain_no_results())
2482 self.assertTrue(messages)
2483 # Want all expected snippets to appear in at least one message.
2484 self.assertTrue(
2485 any(
2486 all(snippet in message for snippet in snippets) for message in query.explain_no_results()
2487 ),
2488 messages,
2489 )
2491 # This query yields four overlaps in the database, but one is filtered
2492 # out in postprocessing. The count queries aren't accurate because
2493 # they don't account for duplication that happens due to an internal
2494 # join against commonSkyPix.
2495 query3 = registry.queryDataIds(["visit", "tract"], instrument="Cam1", skymap="SkyMap1")
2496 self.assertEqual(
2497 {
2498 DataCoordinate.standardize(
2499 instrument="Cam1",
2500 skymap="SkyMap1",
2501 visit=v,
2502 tract=t,
2503 universe=registry.dimensions,
2504 )
2505 for v, t in [(1, 0), (2, 0), (2, 1)]
2506 },
2507 set(query3),
2508 )
2509 self.assertTrue(query3.any(execute=False, exact=False))
2510 self.assertTrue(query3.any(execute=True, exact=False))
2511 self.assertTrue(query3.any(execute=True, exact=True))
2512 self.assertGreaterEqual(query3.count(exact=False), 4)
2513 self.assertGreaterEqual(query3.count(exact=True), 3)
2514 self.assertFalse(list(query3.explain_no_results()))
2515 # This query yields overlaps in the database, but all are filtered
2516 # out in postprocessing. The count queries again aren't very useful.
2517 # We have to use `where=` here to avoid an optimization that
2518 # (currently) skips the spatial postprocess-filtering because it
2519 # recognizes that no spatial join is necessary. That's not ideal, but
2520 # fixing it is out of scope for this ticket.
2521 query4 = registry.queryDataIds(
2522 ["visit", "tract"],
2523 instrument="Cam1",
2524 skymap="SkyMap1",
2525 where="visit=1 AND detector=1 AND tract=0 AND patch=4",
2526 )
2527 self.assertFalse(set(query4))
2528 self.assertTrue(query4.any(execute=False, exact=False))
2529 self.assertTrue(query4.any(execute=True, exact=False))
2530 self.assertFalse(query4.any(execute=True, exact=True))
2531 self.assertGreaterEqual(query4.count(exact=False), 1)
2532 self.assertEqual(query4.count(exact=True), 0)
2533 messages = list(query4.explain_no_results())
2534 self.assertTrue(messages)
2535 self.assertTrue(any("regions did not overlap" in message for message in messages))
2537 # And there are cases when queries make empty results but we do not
2538 # know how to explain that yet (could we just say miracles happen?)
2539 query5 = registry.queryDimensionRecords(
2540 "detector", where="detector.purpose = 'no-purpose'", instrument="Cam1"
2541 )
2542 self.assertEqual(query5.count(exact=True), 0)
2543 messages = list(query5.explain_no_results())
2544 self.assertFalse(messages)
2546 def testQueryDataIdsOrderBy(self):
2547 """Test order_by and limit on result returned by queryDataIds()."""
2548 registry = self.makeRegistry()
2549 self.loadData(registry, "base.yaml")
2550 self.loadData(registry, "datasets.yaml")
2551 self.loadData(registry, "spatial.yaml")
2553 def do_query(dimensions=("visit", "tract"), datasets=None, collections=None):
2554 return registry.queryDataIds(
2555 dimensions, datasets=datasets, collections=collections, instrument="Cam1", skymap="SkyMap1"
2556 )
2558 Test = namedtuple(
2559 "testQueryDataIdsOrderByTest",
2560 ("order_by", "keys", "result", "limit", "datasets", "collections"),
2561 defaults=(None, None, None),
2562 )
2564 test_data = (
2565 Test("tract,visit", "tract,visit", ((0, 1), (0, 1), (0, 2), (0, 2), (1, 2), (1, 2))),
2566 Test("-tract,visit", "tract,visit", ((1, 2), (1, 2), (0, 1), (0, 1), (0, 2), (0, 2))),
2567 Test("tract,-visit", "tract,visit", ((0, 2), (0, 2), (0, 1), (0, 1), (1, 2), (1, 2))),
2568 Test("-tract,-visit", "tract,visit", ((1, 2), (1, 2), (0, 2), (0, 2), (0, 1), (0, 1))),
2569 Test(
2570 "tract.id,visit.id",
2571 "tract,visit",
2572 ((0, 1), (0, 1), (0, 2)),
2573 limit=(3,),
2574 ),
2575 Test("-tract,-visit", "tract,visit", ((1, 2), (1, 2), (0, 2)), limit=(3,)),
2576 Test("tract,visit", "tract,visit", ((0, 2), (1, 2), (1, 2)), limit=(3, 3)),
2577 Test("-tract,-visit", "tract,visit", ((0, 1),), limit=(3, 5)),
2578 Test(
2579 "tract,visit.exposure_time", "tract,visit", ((0, 2), (0, 2), (0, 1), (0, 1), (1, 2), (1, 2))
2580 ),
2581 Test(
2582 "-tract,-visit.exposure_time", "tract,visit", ((1, 2), (1, 2), (0, 1), (0, 1), (0, 2), (0, 2))
2583 ),
2584 Test("tract,-exposure_time", "tract,visit", ((0, 1), (0, 1), (0, 2), (0, 2), (1, 2), (1, 2))),
2585 Test("tract,visit.name", "tract,visit", ((0, 1), (0, 1), (0, 2), (0, 2), (1, 2), (1, 2))),
2586 Test(
2587 "tract,-timespan.begin,timespan.end",
2588 "tract,visit",
2589 ((0, 2), (0, 2), (0, 1), (0, 1), (1, 2), (1, 2)),
2590 ),
2591 Test("visit.day_obs,exposure.day_obs", "visit,exposure", ()),
2592 Test("visit.timespan.begin,-exposure.timespan.begin", "visit,exposure", ()),
2593 Test(
2594 "tract,detector",
2595 "tract,detector",
2596 ((0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4)),
2597 datasets="flat",
2598 collections="imported_r",
2599 ),
2600 Test(
2601 "tract,detector.full_name",
2602 "tract,detector",
2603 ((0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4)),
2604 datasets="flat",
2605 collections="imported_r",
2606 ),
2607 Test(
2608 "tract,detector.raft,detector.name_in_raft",
2609 "tract,detector",
2610 ((0, 1), (0, 2), (0, 3), (0, 4), (1, 1), (1, 2), (1, 3), (1, 4)),
2611 datasets="flat",
2612 collections="imported_r",
2613 ),
2614 )
2616 for test in test_data:
2617 order_by = test.order_by.split(",")
2618 keys = test.keys.split(",")
2619 query = do_query(keys, test.datasets, test.collections).order_by(*order_by)
2620 if test.limit is not None:
2621 query = query.limit(*test.limit)
2622 dataIds = tuple(tuple(dataId[k] for k in keys) for dataId in query)
2623 self.assertEqual(dataIds, test.result)
2625 # and materialize
2626 query = do_query(keys).order_by(*order_by)
2627 if test.limit is not None:
2628 query = query.limit(*test.limit)
2629 with query.materialize() as materialized:
2630 dataIds = tuple(tuple(dataId[k] for k in keys) for dataId in materialized)
2631 self.assertEqual(dataIds, test.result)
2633 # errors in a name
2634 for order_by in ("", "-"):
2635 with self.assertRaisesRegex(ValueError, "Empty dimension name in ORDER BY"):
2636 list(do_query().order_by(order_by))
2638 for order_by in ("undimension.name", "-undimension.name"):
2639 with self.assertRaisesRegex(ValueError, "Unknown dimension element name 'undimension'"):
2640 list(do_query().order_by(order_by))
2642 for order_by in ("attract", "-attract"):
2643 with self.assertRaisesRegex(ValueError, "Metadata 'attract' cannot be found in any dimension"):
2644 list(do_query().order_by(order_by))
2646 with self.assertRaisesRegex(ValueError, "Metadata 'exposure_time' exists in more than one dimension"):
2647 list(do_query(("exposure", "visit")).order_by("exposure_time"))
2649 with self.assertRaisesRegex(ValueError, "Timespan exists in more than one dimesion"):
2650 list(do_query(("exposure", "visit")).order_by("timespan.begin"))
2652 with self.assertRaisesRegex(
2653 ValueError, "Cannot find any temporal dimension element for 'timespan.begin'"
2654 ):
2655 list(do_query(("tract")).order_by("timespan.begin"))
2657 with self.assertRaisesRegex(ValueError, "Cannot use 'timespan.begin' with non-temporal element"):
2658 list(do_query(("tract")).order_by("tract.timespan.begin"))
2660 with self.assertRaisesRegex(ValueError, "Field 'name' does not exist in 'tract'."):
2661 list(do_query(("tract")).order_by("tract.name"))
2663 def testQueryDataIdsGovernorExceptions(self):
2664 """Test exceptions raised by queryDataIds() for incorrect governors."""
2665 registry = self.makeRegistry()
2666 self.loadData(registry, "base.yaml")
2667 self.loadData(registry, "datasets.yaml")
2668 self.loadData(registry, "spatial.yaml")
2670 def do_query(dimensions, dataId=None, where=None, bind=None, **kwargs):
2671 return registry.queryDataIds(dimensions, dataId=dataId, where=where, bind=bind, **kwargs)
2673 Test = namedtuple(
2674 "testQueryDataIdExceptionsTest",
2675 ("dimensions", "dataId", "where", "bind", "kwargs", "exception", "count"),
2676 defaults=(None, None, None, {}, None, 0),
2677 )
2679 test_data = (
2680 Test("tract,visit", count=6),
2681 Test("tract,visit", kwargs={"instrument": "Cam1", "skymap": "SkyMap1"}, count=6),
2682 Test(
2683 "tract,visit", kwargs={"instrument": "Cam2", "skymap": "SkyMap1"}, exception=DataIdValueError
2684 ),
2685 Test("tract,visit", dataId={"instrument": "Cam1", "skymap": "SkyMap1"}, count=6),
2686 Test(
2687 "tract,visit", dataId={"instrument": "Cam1", "skymap": "SkyMap2"}, exception=DataIdValueError
2688 ),
2689 Test("tract,visit", where="instrument='Cam1' AND skymap='SkyMap1'", count=6),
2690 Test("tract,visit", where="instrument='Cam1' AND skymap='SkyMap5'", exception=DataIdValueError),
2691 Test(
2692 "tract,visit",
2693 where="instrument=cam AND skymap=map",
2694 bind={"cam": "Cam1", "map": "SkyMap1"},
2695 count=6,
2696 ),
2697 Test(
2698 "tract,visit",
2699 where="instrument=cam AND skymap=map",
2700 bind={"cam": "Cam", "map": "SkyMap"},
2701 exception=DataIdValueError,
2702 ),
2703 )
2705 for test in test_data:
2706 dimensions = test.dimensions.split(",")
2707 if test.exception:
2708 with self.assertRaises(test.exception):
2709 do_query(dimensions, test.dataId, test.where, bind=test.bind, **test.kwargs).count()
2710 else:
2711 query = do_query(dimensions, test.dataId, test.where, bind=test.bind, **test.kwargs)
2712 self.assertEqual(query.count(), test.count)
2714 # and materialize
2715 if test.exception:
2716 with self.assertRaises(test.exception):
2717 query = do_query(dimensions, test.dataId, test.where, bind=test.bind, **test.kwargs)
2718 with query.materialize() as materialized:
2719 materialized.count()
2720 else:
2721 query = do_query(dimensions, test.dataId, test.where, bind=test.bind, **test.kwargs)
2722 with query.materialize() as materialized:
2723 self.assertEqual(materialized.count(), test.count)
2725 def testQueryDimensionRecordsOrderBy(self):
2726 """Test order_by and limit on result returned by
2727 queryDimensionRecords().
2728 """
2729 registry = self.makeRegistry()
2730 self.loadData(registry, "base.yaml")
2731 self.loadData(registry, "datasets.yaml")
2732 self.loadData(registry, "spatial.yaml")
2734 def do_query(element, datasets=None, collections=None):
2735 return registry.queryDimensionRecords(
2736 element, instrument="Cam1", datasets=datasets, collections=collections
2737 )
2739 query = do_query("detector")
2740 self.assertEqual(len(list(query)), 4)
2742 Test = namedtuple(
2743 "testQueryDataIdsOrderByTest",
2744 ("element", "order_by", "result", "limit", "datasets", "collections"),
2745 defaults=(None, None, None),
2746 )
2748 test_data = (
2749 Test("detector", "detector", (1, 2, 3, 4)),
2750 Test("detector", "-detector", (4, 3, 2, 1)),
2751 Test("detector", "raft,-name_in_raft", (2, 1, 4, 3)),
2752 Test("detector", "-detector.purpose", (4,), limit=(1,)),
2753 Test("detector", "-purpose,detector.raft,name_in_raft", (2, 3), limit=(2, 2)),
2754 Test("visit", "visit", (1, 2)),
2755 Test("visit", "-visit.id", (2, 1)),
2756 Test("visit", "zenith_angle", (1, 2)),
2757 Test("visit", "-visit.name", (2, 1)),
2758 Test("visit", "day_obs,-timespan.begin", (2, 1)),
2759 )
2761 for test in test_data:
2762 order_by = test.order_by.split(",")
2763 query = do_query(test.element).order_by(*order_by)
2764 if test.limit is not None:
2765 query = query.limit(*test.limit)
2766 dataIds = tuple(rec.id for rec in query)
2767 self.assertEqual(dataIds, test.result)
2769 # errors in a name
2770 for order_by in ("", "-"):
2771 with self.assertRaisesRegex(ValueError, "Empty dimension name in ORDER BY"):
2772 list(do_query("detector").order_by(order_by))
2774 for order_by in ("undimension.name", "-undimension.name"):
2775 with self.assertRaisesRegex(ValueError, "Element name mismatch: 'undimension'"):
2776 list(do_query("detector").order_by(order_by))
2778 for order_by in ("attract", "-attract"):
2779 with self.assertRaisesRegex(ValueError, "Field 'attract' does not exist in 'detector'."):
2780 list(do_query("detector").order_by(order_by))
2782 def testQueryDimensionRecordsExceptions(self):
2783 """Test exceptions raised by queryDimensionRecords()."""
2784 registry = self.makeRegistry()
2785 self.loadData(registry, "base.yaml")
2786 self.loadData(registry, "datasets.yaml")
2787 self.loadData(registry, "spatial.yaml")
2789 result = registry.queryDimensionRecords("detector")
2790 self.assertEqual(result.count(), 4)
2791 result = registry.queryDimensionRecords("detector", instrument="Cam1")
2792 self.assertEqual(result.count(), 4)
2793 result = registry.queryDimensionRecords("detector", dataId={"instrument": "Cam1"})
2794 self.assertEqual(result.count(), 4)
2795 result = registry.queryDimensionRecords("detector", where="instrument='Cam1'")
2796 self.assertEqual(result.count(), 4)
2797 result = registry.queryDimensionRecords("detector", where="instrument=instr", bind={"instr": "Cam1"})
2798 self.assertEqual(result.count(), 4)
2800 with self.assertRaisesRegex(
2801 DataIdValueError, "Could not fetch record for required dimension instrument"
2802 ):
2803 registry.queryDimensionRecords("detector", instrument="NotCam1")
2805 with self.assertRaisesRegex(
2806 DataIdValueError, "Could not fetch record for required dimension instrument"
2807 ):
2808 result = registry.queryDimensionRecords("detector", dataId={"instrument": "NotCam1"})
2810 with self.assertRaisesRegex(DataIdValueError, "Unknown values specified for governor dimension"):
2811 result = registry.queryDimensionRecords("detector", where="instrument='NotCam1'")
2812 result.count()
2814 with self.assertRaisesRegex(DataIdValueError, "Unknown values specified for governor dimension"):
2815 result = registry.queryDimensionRecords(
2816 "detector", where="instrument=instr", bind={"instr": "NotCam1"}
2817 )
2818 result.count()
2820 def testDatasetConstrainedDimensionRecordQueries(self):
2821 """Test that queryDimensionRecords works even when given a dataset
2822 constraint whose dimensions extend beyond the requested dimension
2823 element's.
2824 """
2825 registry = self.makeRegistry()
2826 self.loadData(registry, "base.yaml")
2827 self.loadData(registry, "datasets.yaml")
2828 # Query for physical_filter dimension records, using a dataset that
2829 # has both physical_filter and dataset dimensions.
2830 records = registry.queryDimensionRecords(
2831 "physical_filter",
2832 datasets=["flat"],
2833 collections="imported_r",
2834 )
2835 self.assertEqual({record.name for record in records}, {"Cam1-R1", "Cam1-R2"})