|
def | aggregate (sourceCatalog, metadata, wcsresids, diaSources=None) |
|
Quality Assessment class for Kernel Candidates
Definition at line 36 of file kernelCandidateQa.py.
◆ __init__()
def lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.__init__ |
( |
|
self, |
|
|
|
nKernelSpatial |
|
) |
| |
Class to undertake QA of KernelCandidates after modeling of
the Psf-matching kernel. Both directly--fitted diffim (LOCAL)
and spatially--interpolated kernel diffim (SPATIAL) metrics
are calculated, based on the distribution of residuals in the
KernelCandidates stamp.
Parameters
----------
nKernelSpatial : `int`
Number of terms in the spatial model; needed to initialize per-basis QA arrays
Definition at line 39 of file kernelCandidateQa.py.
◆ addToSchema()
def lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.addToSchema |
( |
|
self, |
|
|
|
inSourceCatalog |
|
) |
| |
◆ aggregate()
def lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.aggregate |
( |
|
sourceCatalog, |
|
|
|
metadata, |
|
|
|
wcsresids, |
|
|
|
diaSources = None |
|
) |
| |
|
static |
Generate aggregate metrics (e.g. total numbers of false
positives) from all the Sources in the sourceCatalog
Definition at line 296 of file kernelCandidateQa.py.
◆ apply()
def lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.apply |
( |
|
cls, |
|
|
|
candidateList, |
|
|
|
spatialKernel, |
|
|
|
spatialBackground, |
|
|
|
dof = 0 |
|
) |
| |
Evaluate the QA metrics for all KernelCandidates in the
candidateList; set the values of the metrics in their
associated Sources
Definition at line 200 of file kernelCandidateQa.py.
◆ makeMetricMap()
def lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.makeMetricMap |
( |
|
self | ) |
|
◆ fields
lsst.ip.diffim.kernelCandidateQa.KernelCandidateQa.fields |
The documentation for this class was generated from the following file: