lsst.pipe.tasks v23.0.x-g1e964bd5bd+f2fbba1123
insertFakes.py
Go to the documentation of this file.
1# This file is part of pipe tasks
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
21
22"""
23Insert fakes into deepCoadds
24"""
25import galsim
26from astropy.table import Table
27import numpy as np
28
29import lsst.geom as geom
30import lsst.afw.image as afwImage
31import lsst.afw.math as afwMath
32import lsst.pex.config as pexConfig
33import lsst.pipe.base as pipeBase
34
35from lsst.pipe.base import CmdLineTask, PipelineTask, PipelineTaskConfig, PipelineTaskConnections
36import lsst.pipe.base.connectionTypes as cT
37from lsst.pex.exceptions import LogicError, InvalidParameterError
38from lsst.coadd.utils.coaddDataIdContainer import ExistingCoaddDataIdContainer
39from lsst.geom import SpherePoint, radians, Box2D, Point2D
40
41__all__ = ["InsertFakesConfig", "InsertFakesTask"]
42
43
44def _add_fake_sources(exposure, objects, calibFluxRadius=12.0, logger=None):
45 """Add fake sources to the given exposure
46
47 Parameters
48 ----------
49 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
50 The exposure into which the fake sources should be added
51 objects : `typing.Iterator` [`tuple` ['lsst.geom.SpherePoint`, `galsim.GSObject`]]
52 An iterator of tuples that contains (or generates) locations and object
53 surface brightness profiles to inject.
54 calibFluxRadius : `float`, optional
55 Aperture radius (in pixels) used to define the calibration for this
56 exposure+catalog. This is used to produce the correct instrumental fluxes
57 within the radius. The value should match that of the field defined in
58 slot_CalibFlux_instFlux.
59 logger : `lsst.log.log.log.Log` or `logging.Logger`, optional
60 Logger.
61 """
62 exposure.mask.addMaskPlane("FAKE")
63 bitmask = exposure.mask.getPlaneBitMask("FAKE")
64 if logger:
65 logger.info(f"Adding mask plane with bitmask {bitmask}")
66
67 wcs = exposure.getWcs()
68 psf = exposure.getPsf()
69
70 bbox = exposure.getBBox()
71 fullBounds = galsim.BoundsI(bbox.minX, bbox.maxX, bbox.minY, bbox.maxY)
72 gsImg = galsim.Image(exposure.image.array, bounds=fullBounds)
73
74 for spt, gsObj in objects:
75 pt = wcs.skyToPixel(spt)
76 posd = galsim.PositionD(pt.x, pt.y)
77 posi = galsim.PositionI(pt.x//1, pt.y//1)
78 if logger:
79 logger.debug(f"Adding fake source at {pt}")
80
81 mat = wcs.linearizePixelToSky(spt, geom.arcseconds).getMatrix()
82 gsWCS = galsim.JacobianWCS(mat[0, 0], mat[0, 1], mat[1, 0], mat[1, 1])
83
84 try:
85 psfArr = psf.computeKernelImage(pt).array
86 except InvalidParameterError:
87 # Try mapping to nearest point contained in bbox.
88 contained_pt = Point2D(
89 np.clip(pt.x, bbox.minX, bbox.maxX),
90 np.clip(pt.y, bbox.minY, bbox.maxY)
91 )
92 if pt == contained_pt: # no difference, so skip immediately
93 if logger:
94 logger.infof(
95 "Cannot compute Psf for object at {}; skipping",
96 pt
97 )
98 continue
99 # otherwise, try again with new point
100 try:
101 psfArr = psf.computeKernelImage(contained_pt).array
102 except InvalidParameterError:
103 if logger:
104 logger.infof(
105 "Cannot compute Psf for object at {}; skipping",
106 pt
107 )
108 continue
109 apCorr = psf.computeApertureFlux(calibFluxRadius)
110 psfArr /= apCorr
111 gsPSF = galsim.InterpolatedImage(galsim.Image(psfArr), wcs=gsWCS)
112
113 conv = galsim.Convolve(gsObj, gsPSF)
114 stampSize = conv.getGoodImageSize(gsWCS.minLinearScale())
115 subBounds = galsim.BoundsI(posi).withBorder(stampSize//2)
116 subBounds &= fullBounds
117
118 if subBounds.area() > 0:
119 subImg = gsImg[subBounds]
120 offset = posd - subBounds.true_center
121 # Note, for calexp injection, pixel is already part of the PSF and
122 # for coadd injection, it's incorrect to include the output pixel.
123 # So for both cases, we draw using method='no_pixel'.
124 conv.drawImage(
125 subImg,
126 add_to_image=True,
127 offset=offset,
128 wcs=gsWCS,
129 method='no_pixel'
130 )
131
132 subBox = geom.Box2I(
133 geom.Point2I(subBounds.xmin, subBounds.ymin),
134 geom.Point2I(subBounds.xmax, subBounds.ymax)
135 )
136 exposure[subBox].mask.array |= bitmask
137
138
139def _isWCSGalsimDefault(wcs, hdr):
140 """Decide if wcs = galsim.PixelScale(1.0) is explicitly present in header,
141 or if it's just the galsim default.
142
143 Parameters
144 ----------
145 wcs : galsim.BaseWCS
146 Potentially default WCS.
147 hdr : galsim.fits.FitsHeader
148 Header as read in by galsim.
149
150 Returns
151 -------
152 isDefault : bool
153 True if default, False if explicitly set in header.
154 """
155 if wcs != galsim.PixelScale(1.0):
156 return False
157 if hdr.get('GS_WCS') is not None:
158 return False
159 if hdr.get('CTYPE1', 'LINEAR') == 'LINEAR':
160 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
161 for wcs_type in galsim.fitswcs.fits_wcs_types:
162 # If one of these succeeds, then assume result is explicit
163 try:
164 wcs_type._readHeader(hdr)
165 return False
166 except Exception:
167 pass
168 else:
169 return not any(k in hdr for k in ['CD1_1', 'CDELT1'])
170
171
172class InsertFakesConnections(PipelineTaskConnections,
173 defaultTemplates={"coaddName": "deep",
174 "fakesType": "fakes_"},
175 dimensions=("tract", "patch", "band", "skymap")):
176
177 image = cT.Input(
178 doc="Image into which fakes are to be added.",
179 name="{coaddName}Coadd",
180 storageClass="ExposureF",
181 dimensions=("tract", "patch", "band", "skymap")
182 )
183
184 fakeCat = cT.Input(
185 doc="Catalog of fake sources to draw inputs from.",
186 name="{fakesType}fakeSourceCat",
187 storageClass="DataFrame",
188 dimensions=("tract", "skymap")
189 )
190
191 imageWithFakes = cT.Output(
192 doc="Image with fake sources added.",
193 name="{fakesType}{coaddName}Coadd",
194 storageClass="ExposureF",
195 dimensions=("tract", "patch", "band", "skymap")
196 )
197
198
199class InsertFakesConfig(PipelineTaskConfig,
200 pipelineConnections=InsertFakesConnections):
201 """Config for inserting fake sources
202 """
203
204 # Unchanged
205
206 doCleanCat = pexConfig.Field(
207 doc="If true removes bad sources from the catalog.",
208 dtype=bool,
209 default=True,
210 )
211
212 fakeType = pexConfig.Field(
213 doc="What type of fake catalog to use, snapshot (includes variability in the magnitudes calculated "
214 "from the MJD of the image), static (no variability) or filename for a user defined fits"
215 "catalog.",
216 dtype=str,
217 default="static",
218 )
219
220 calibFluxRadius = pexConfig.Field(
221 doc="Aperture radius (in pixels) that was used to define the calibration for this image+catalog. "
222 "This will be used to produce the correct instrumental fluxes within the radius. "
223 "This value should match that of the field defined in slot_CalibFlux_instFlux.",
224 dtype=float,
225 default=12.0,
226 )
227
228 coaddName = pexConfig.Field(
229 doc="The name of the type of coadd used",
230 dtype=str,
231 default="deep",
232 )
233
234 doSubSelectSources = pexConfig.Field(
235 doc="Set to True if you wish to sub select sources to be input based on the value in the column"
236 "set in the sourceSelectionColName config option.",
237 dtype=bool,
238 default=False
239 )
240
241 insertImages = pexConfig.Field(
242 doc="Insert images directly? True or False.",
243 dtype=bool,
244 default=False,
245 )
246
247 doProcessAllDataIds = pexConfig.Field(
248 doc="If True, all input data IDs will be processed, even those containing no fake sources.",
249 dtype=bool,
250 default=False,
251 )
252
253 trimBuffer = pexConfig.Field(
254 doc="Size of the pixel buffer surrounding the image. Only those fake sources with a centroid"
255 "falling within the image+buffer region will be considered for fake source injection.",
256 dtype=int,
257 default=100,
258 )
259
260 sourceType = pexConfig.Field(
261 doc="The column name for the source type used in the fake source catalog.",
262 dtype=str,
263 default="sourceType",
264 )
265
266 # New source catalog config variables
267
268 ra_col = pexConfig.Field(
269 doc="Source catalog column name for RA (in radians).",
270 dtype=str,
271 default="ra",
272 )
273
274 dec_col = pexConfig.Field(
275 doc="Source catalog column name for dec (in radians).",
276 dtype=str,
277 default="dec",
278 )
279
280 bulge_semimajor_col = pexConfig.Field(
281 doc="Source catalog column name for the semimajor axis (in arcseconds) "
282 "of the bulge half-light ellipse.",
283 dtype=str,
284 default="bulge_semimajor",
285 )
286
287 bulge_axis_ratio_col = pexConfig.Field(
288 doc="Source catalog column name for the axis ratio of the bulge "
289 "half-light ellipse.",
290 dtype=str,
291 default="bulge_axis_ratio",
292 )
293
294 bulge_pa_col = pexConfig.Field(
295 doc="Source catalog column name for the position angle (measured from "
296 "North through East in degrees) of the semimajor axis of the bulge "
297 "half-light ellipse.",
298 dtype=str,
299 default="bulge_pa",
300 )
301
302 bulge_n_col = pexConfig.Field(
303 doc="Source catalog column name for the Sersic index of the bulge.",
304 dtype=str,
305 default="bulge_n",
306 )
307
308 disk_semimajor_col = pexConfig.Field(
309 doc="Source catalog column name for the semimajor axis (in arcseconds) "
310 "of the disk half-light ellipse.",
311 dtype=str,
312 default="disk_semimajor",
313 )
314
315 disk_axis_ratio_col = pexConfig.Field(
316 doc="Source catalog column name for the axis ratio of the disk "
317 "half-light ellipse.",
318 dtype=str,
319 default="disk_axis_ratio",
320 )
321
322 disk_pa_col = pexConfig.Field(
323 doc="Source catalog column name for the position angle (measured from "
324 "North through East in degrees) of the semimajor axis of the disk "
325 "half-light ellipse.",
326 dtype=str,
327 default="disk_pa",
328 )
329
330 disk_n_col = pexConfig.Field(
331 doc="Source catalog column name for the Sersic index of the disk.",
332 dtype=str,
333 default="disk_n",
334 )
335
336 bulge_disk_flux_ratio_col = pexConfig.Field(
337 doc="Source catalog column name for the bulge/disk flux ratio.",
338 dtype=str,
339 default="bulge_disk_flux_ratio",
340 )
341
342 mag_col = pexConfig.Field(
343 doc="Source catalog column name template for magnitudes, in the format "
344 "``filter name``_mag_col. E.g., if this config variable is set to "
345 "``%s_mag``, then the i-band magnitude will be searched for in the "
346 "``i_mag`` column of the source catalog.",
347 dtype=str,
348 default="%s_mag"
349 )
350
351 select_col = pexConfig.Field(
352 doc="Source catalog column name to be used to select which sources to "
353 "add.",
354 dtype=str,
355 default="select",
356 )
357
358 # Deprecated config variables
359
360 raColName = pexConfig.Field(
361 doc="RA column name used in the fake source catalog.",
362 dtype=str,
363 default="raJ2000",
364 deprecated="Use `ra_col` instead."
365 )
366
367 decColName = pexConfig.Field(
368 doc="Dec. column name used in the fake source catalog.",
369 dtype=str,
370 default="decJ2000",
371 deprecated="Use `dec_col` instead."
372 )
373
374 diskHLR = pexConfig.Field(
375 doc="Column name for the disk half light radius used in the fake source catalog.",
376 dtype=str,
377 default="DiskHalfLightRadius",
378 deprecated=(
379 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
380 " to specify disk half-light ellipse."
381 )
382 )
383
384 aDisk = pexConfig.Field(
385 doc="The column name for the semi major axis length of the disk component used in the fake source"
386 "catalog.",
387 dtype=str,
388 default="a_d",
389 deprecated=(
390 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
391 " to specify disk half-light ellipse."
392 )
393 )
394
395 bDisk = pexConfig.Field(
396 doc="The column name for the semi minor axis length of the disk component.",
397 dtype=str,
398 default="b_d",
399 deprecated=(
400 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
401 " to specify disk half-light ellipse."
402 )
403 )
404
405 paDisk = pexConfig.Field(
406 doc="The column name for the PA of the disk component used in the fake source catalog.",
407 dtype=str,
408 default="pa_disk",
409 deprecated=(
410 "Use `disk_semimajor_col`, `disk_axis_ratio_col`, and `disk_pa_col`"
411 " to specify disk half-light ellipse."
412 )
413 )
414
415 nDisk = pexConfig.Field(
416 doc="The column name for the sersic index of the disk component used in the fake source catalog.",
417 dtype=str,
418 default="disk_n",
419 deprecated="Use `disk_n` instead."
420 )
421
422 bulgeHLR = pexConfig.Field(
423 doc="Column name for the bulge half light radius used in the fake source catalog.",
424 dtype=str,
425 default="BulgeHalfLightRadius",
426 deprecated=(
427 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
428 "`bulge_pa_col` to specify disk half-light ellipse."
429 )
430 )
431
432 aBulge = pexConfig.Field(
433 doc="The column name for the semi major axis length of the bulge component.",
434 dtype=str,
435 default="a_b",
436 deprecated=(
437 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
438 "`bulge_pa_col` to specify disk half-light ellipse."
439 )
440 )
441
442 bBulge = pexConfig.Field(
443 doc="The column name for the semi minor axis length of the bulge component used in the fake source "
444 "catalog.",
445 dtype=str,
446 default="b_b",
447 deprecated=(
448 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
449 "`bulge_pa_col` to specify disk half-light ellipse."
450 )
451 )
452
453 paBulge = pexConfig.Field(
454 doc="The column name for the PA of the bulge component used in the fake source catalog.",
455 dtype=str,
456 default="pa_bulge",
457 deprecated=(
458 "Use `bulge_semimajor_col`, `bulge_axis_ratio_col`, and "
459 "`bulge_pa_col` to specify disk half-light ellipse."
460 )
461 )
462
463 nBulge = pexConfig.Field(
464 doc="The column name for the sersic index of the bulge component used in the fake source catalog.",
465 dtype=str,
466 default="bulge_n",
467 deprecated="Use `bulge_n` instead."
468 )
469
470 magVar = pexConfig.Field(
471 doc="The column name for the magnitude calculated taking variability into account. In the format "
472 "``filter name``magVar, e.g. imagVar for the magnitude in the i band.",
473 dtype=str,
474 default="%smagVar",
475 deprecated="Use `mag_col` instead."
476 )
477
478 sourceSelectionColName = pexConfig.Field(
479 doc="The name of the column in the input fakes catalogue to be used to determine which sources to"
480 "add, default is none and when this is used all sources are added.",
481 dtype=str,
482 default="templateSource",
483 deprecated="Use `select_col` instead."
484 )
485
486
487class InsertFakesTask(PipelineTask, CmdLineTask):
488 """Insert fake objects into images.
489
490 Add fake stars and galaxies to the given image, read in through the dataRef. Galaxy parameters are read in
491 from the specified file and then modelled using galsim.
492
493 `InsertFakesTask` has five functions that make images of the fake sources and then add them to the
494 image.
495
496 `addPixCoords`
497 Use the WCS information to add the pixel coordinates of each source.
498 `mkFakeGalsimGalaxies`
499 Use Galsim to make fake double sersic galaxies for each set of galaxy parameters in the input file.
500 `mkFakeStars`
501 Use the PSF information from the image to make a fake star using the magnitude information from the
502 input file.
503 `cleanCat`
504 Remove rows of the input fake catalog which have half light radius, of either the bulge or the disk,
505 that are 0. Also removes rows that have Sersic index outside of galsim's allowed paramters. If
506 the config option sourceSelectionColName is set then this function limits the catalog of input fakes
507 to only those which are True in this column.
508 `addFakeSources`
509 Add the fake sources to the image.
510
511 """
512
513 _DefaultName = "insertFakes"
514 ConfigClass = InsertFakesConfig
515
516 def runDataRef(self, dataRef):
517 """Read in/write out the required data products and add fake sources to the deepCoadd.
518
519 Parameters
520 ----------
522 Data reference defining the image to have fakes added to it
523 Used to access the following data products:
524 deepCoadd
525 """
526
527 self.log.info("Adding fakes to: tract: %d, patch: %s, filter: %s",
528 dataRef.dataId["tract"], dataRef.dataId["patch"], dataRef.dataId["filter"])
529
530 # To do: should it warn when asked to insert variable sources into the coadd
531
532 if self.config.fakeType == "static":
533 fakeCat = dataRef.get("deepCoadd_fakeSourceCat").toDataFrame()
534 # To do: DM-16254, the read and write of the fake catalogs will be changed once the new pipeline
535 # task structure for ref cats is in place.
536 self.fakeSourceCatType = "deepCoadd_fakeSourceCat"
537 else:
538 fakeCat = Table.read(self.config.fakeType).to_pandas()
539
540 coadd = dataRef.get("deepCoadd")
541 wcs = coadd.getWcs()
542 photoCalib = coadd.getPhotoCalib()
543
544 imageWithFakes = self.run(fakeCat, coadd, wcs, photoCalib)
545
546 dataRef.put(imageWithFakes.imageWithFakes, "fakes_deepCoadd")
547
548 def runQuantum(self, butlerQC, inputRefs, outputRefs):
549 inputs = butlerQC.get(inputRefs)
550 inputs["wcs"] = inputs["image"].getWcs()
551 inputs["photoCalib"] = inputs["image"].getPhotoCalib()
552
553 outputs = self.run(**inputs)
554 butlerQC.put(outputs, outputRefs)
555
556 @classmethod
557 def _makeArgumentParser(cls):
558 parser = pipeBase.ArgumentParser(name=cls._DefaultName)
559 parser.add_id_argument(name="--id", datasetType="deepCoadd",
560 help="data IDs for the deepCoadd, e.g. --id tract=12345 patch=1,2 filter=r",
561 ContainerClass=ExistingCoaddDataIdContainer)
562 return parser
563
564 def run(self, fakeCat, image, wcs, photoCalib):
565 """Add fake sources to an image.
566
567 Parameters
568 ----------
569 fakeCat : `pandas.core.frame.DataFrame`
570 The catalog of fake sources to be input
571 image : `lsst.afw.image.exposure.exposure.ExposureF`
572 The image into which the fake sources should be added
574 WCS to use to add fake sources
575 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
576 Photometric calibration to be used to calibrate the fake sources
577
578 Returns
579 -------
580 resultStruct : `lsst.pipe.base.struct.Struct`
581 contains : image : `lsst.afw.image.exposure.exposure.ExposureF`
582
583 Notes
584 -----
585 Adds pixel coordinates for each source to the fakeCat and removes objects with bulge or disk half
586 light radius = 0 (if ``config.doCleanCat = True``).
587
588 Adds the ``Fake`` mask plane to the image which is then set by `addFakeSources` to mark where fake
589 sources have been added. Uses the information in the ``fakeCat`` to make fake galaxies (using galsim)
590 and fake stars, using the PSF models from the PSF information for the image. These are then added to
591 the image and the image with fakes included returned.
592
593 The galsim galaxies are made using a double sersic profile, one for the bulge and one for the disk,
594 this is then convolved with the PSF at that point.
595 """
596 # Attach overriding wcs and photoCalib to image, but retain originals
597 # so we can reset at the end.
598 origWcs = image.getWcs()
599 origPhotoCalib = image.getPhotoCalib()
600 image.setWcs(wcs)
601 image.setPhotoCalib(photoCalib)
602
603 band = image.getFilterLabel().bandLabel
604 fakeCat = self._standardizeColumns(fakeCat, band)
605
606 fakeCat = self.addPixCoords(fakeCat, image)
607 fakeCat = self.trimFakeCat(fakeCat, image)
608
609 if len(fakeCat) > 0:
610 if isinstance(fakeCat[self.config.sourceType].iloc[0], str):
611 galCheckVal = "galaxy"
612 starCheckVal = "star"
613 elif isinstance(fakeCat[self.config.sourceType].iloc[0], bytes):
614 galCheckVal = b"galaxy"
615 starCheckVal = b"star"
616 elif isinstance(fakeCat[self.config.sourceType].iloc[0], (int, float)):
617 galCheckVal = 1
618 starCheckVal = 0
619 else:
620 raise TypeError("sourceType column does not have required type, should be str, bytes or int")
621
622 if not self.config.insertImages:
623 if self.config.doCleanCat:
624 fakeCat = self.cleanCat(fakeCat, starCheckVal)
625
626 generator = self._generateGSObjectsFromCatalog(image, fakeCat, galCheckVal, starCheckVal)
627 else:
628 generator = self._generateGSObjectsFromImages(image, fakeCat)
629 _add_fake_sources(image, generator, calibFluxRadius=self.config.calibFluxRadius, logger=self.log)
630 elif len(fakeCat) == 0 and self.config.doProcessAllDataIds:
631 self.log.warning("No fakes found for this dataRef; processing anyway.")
632 image.mask.addMaskPlane("FAKE")
633 else:
634 raise RuntimeError("No fakes found for this dataRef.")
635
636 # restore original exposure WCS and photoCalib
637 image.setWcs(origWcs)
638 image.setPhotoCalib(origPhotoCalib)
639
640 resultStruct = pipeBase.Struct(imageWithFakes=image)
641
642 return resultStruct
643
644 def _standardizeColumns(self, fakeCat, band):
645 """Use config variables to 'standardize' the expected columns and column
646 names in the input catalog.
647
648 Parameters
649 ----------
650 fakeCat : `pandas.core.frame.DataFrame`
651 The catalog of fake sources to be input
652 band : `str`
653 Label for the current band being processed.
654
655 Returns
656 -------
657 outCat : `pandas.core.frame.DataFrame`
658 The standardized catalog of fake sources
659 """
660 cfg = self.config
661 replace_dict = {}
662
663 # Prefer new config variables over deprecated config variables.
664 # The following are fairly simple to handle as they're just column name
665 # changes.
666 for new_name, depr_name, std_name in [
667 (cfg.ra_col, cfg.raColName, 'ra'),
668 (cfg.dec_col, cfg.decColName, 'dec'),
669 (cfg.bulge_n_col, cfg.nBulge, 'bulge_n'),
670 (cfg.bulge_pa_col, cfg.paBulge, 'bulge_pa'),
671 (cfg.disk_n_col, cfg.nDisk, 'disk_n'),
672 (cfg.disk_pa_col, cfg.paDisk, 'disk_pa'),
673 (cfg.mag_col%band, cfg.magVar%band, 'mag'),
674 (cfg.select_col, cfg.sourceSelectionColName, 'select')
675 ]:
676 # Only standardize "select" column if doSubSelectSources is True
677 if not cfg.doSubSelectSources and std_name == 'select':
678 continue
679 if new_name in fakeCat.columns:
680 replace_dict[new_name] = std_name
681 elif depr_name in fakeCat.columns:
682 replace_dict[depr_name] = std_name
683 else:
684 raise ValueError(f"Could not determine column for {std_name}.")
685 fakeCat = fakeCat.rename(columns=replace_dict, copy=False)
686
687 # Handling the half-light radius and axis-ratio are trickier, since we
688 # moved from expecting (HLR, a, b) to expecting (semimajor, axis_ratio).
689 # Just handle these manually.
690 if (
691 cfg.bulge_semimajor_col in fakeCat.columns
692 and cfg.bulge_axis_ratio_col in fakeCat.columns
693 ):
694 fakeCat = fakeCat.rename(
695 columns={
696 cfg.bulge_semimajor_col: 'bulge_semimajor',
697 cfg.bulge_axis_ratio_col: 'bulge_axis_ratio',
698 cfg.disk_semimajor_col: 'disk_semimajor',
699 cfg.disk_axis_ratio_col: 'disk_axis_ratio',
700 },
701 copy=False
702 )
703 elif (
704 cfg.bulgeHLR in fakeCat.columns
705 and cfg.aBulge in fakeCat.columns
706 and cfg.bBulge in fakeCat.columns
707 ):
708 fakeCat['bulge_axis_ratio'] = (
709 fakeCat[cfg.bBulge]/fakeCat[cfg.aBulge]
710 )
711 fakeCat['bulge_semimajor'] = (
712 fakeCat[cfg.bulgeHLR]/np.sqrt(fakeCat['bulge_axis_ratio'])
713 )
714 fakeCat['disk_axis_ratio'] = (
715 fakeCat[cfg.bDisk]/fakeCat[cfg.aDisk]
716 )
717 fakeCat['disk_semimajor'] = (
718 fakeCat[cfg.diskHLR]/np.sqrt(fakeCat['disk_axis_ratio'])
719 )
720 else:
721 raise ValueError(
722 "Could not determine columns for half-light radius and axis "
723 "ratio."
724 )
725
726 # Process the bulge/disk flux ratio if possible.
727 if cfg.bulge_disk_flux_ratio_col in fakeCat.columns:
728 fakeCat = fakeCat.rename(
729 columns={
730 cfg.bulge_disk_flux_ratio_col: 'bulge_disk_flux_ratio'
731 },
732 copy=False
733 )
734 else:
735 fakeCat['bulge_disk_flux_ratio'] = 1.0
736
737 return fakeCat
738
739 def _generateGSObjectsFromCatalog(self, exposure, fakeCat, galCheckVal, starCheckVal):
740 """Process catalog to generate `galsim.GSObject` s.
741
742 Parameters
743 ----------
744 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
745 The exposure into which the fake sources should be added
746 fakeCat : `pandas.core.frame.DataFrame`
747 The catalog of fake sources to be input
748 galCheckVal : `str`, `bytes` or `int`
749 The value that is set in the sourceType column to specifiy an object is a galaxy.
750 starCheckVal : `str`, `bytes` or `int`
751 The value that is set in the sourceType column to specifiy an object is a star.
752
753 Yields
754 ------
755 gsObjects : `generator`
756 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
757 """
758 wcs = exposure.getWcs()
759 photoCalib = exposure.getPhotoCalib()
760
761 self.log.info("Making %d objects for insertion", len(fakeCat))
762
763 for (index, row) in fakeCat.iterrows():
764 ra = row['ra']
765 dec = row['dec']
766 skyCoord = SpherePoint(ra, dec, radians)
767 xy = wcs.skyToPixel(skyCoord)
768
769 try:
770 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
771 except LogicError:
772 continue
773
774 sourceType = row[self.config.sourceType]
775 if sourceType == galCheckVal:
776 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
777 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
778 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
779 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
780
781 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
782 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
783 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
784
785 gal = bulge*row['bulge_disk_flux_ratio'] + disk
786 gal = gal.withFlux(flux)
787
788 yield skyCoord, gal
789 elif sourceType == starCheckVal:
790 star = galsim.DeltaFunction()
791 star = star.withFlux(flux)
792 yield skyCoord, star
793 else:
794 raise TypeError(f"Unknown sourceType {sourceType}")
795
796 def _generateGSObjectsFromImages(self, exposure, fakeCat):
797 """Process catalog to generate `galsim.GSObject` s.
798
799 Parameters
800 ----------
801 exposure : `lsst.afw.image.exposure.exposure.ExposureF`
802 The exposure into which the fake sources should be added
803 fakeCat : `pandas.core.frame.DataFrame`
804 The catalog of fake sources to be input
805
806 Yields
807 ------
808 gsObjects : `generator`
809 A generator of tuples of `lsst.geom.SpherePoint` and `galsim.GSObject`.
810 """
811 band = exposure.getFilterLabel().bandLabel
812 wcs = exposure.getWcs()
813 photoCalib = exposure.getPhotoCalib()
814
815 self.log.info("Processing %d fake images", len(fakeCat))
816
817 for (index, row) in fakeCat.iterrows():
818 ra = row['ra']
819 dec = row['dec']
820 skyCoord = SpherePoint(ra, dec, radians)
821 xy = wcs.skyToPixel(skyCoord)
822
823 try:
824 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
825 except LogicError:
826 continue
827
828 imFile = row[band+"imFilename"]
829 try:
830 imFile = imFile.decode("utf-8")
831 except AttributeError:
832 pass
833 imFile = imFile.strip()
834 im = galsim.fits.read(imFile, read_header=True)
835
836 # GalSim will always attach a WCS to the image read in as above. If
837 # it can't find a WCS in the header, then it defaults to scale = 1.0
838 # arcsec / pix. So if that's the scale, then we need to check if it
839 # was explicitly set or if it's just the default. If it's just the
840 # default then we should override with the pixel scale of the target
841 # image.
842 if _isWCSGalsimDefault(im.wcs, im.header):
843 im.wcs = galsim.PixelScale(
844 wcs.getPixelScale().asArcseconds()
845 )
846
847 obj = galsim.InterpolatedImage(im)
848 obj = obj.withFlux(flux)
849 yield skyCoord, obj
850
851 def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale):
852 """Process images from files into the format needed for insertion.
853
854 Parameters
855 ----------
856 fakeCat : `pandas.core.frame.DataFrame`
857 The catalog of fake sources to be input
858 wcs : `lsst.afw.geom.skyWcs.skyWcs.SkyWc`
859 WCS to use to add fake sources
860 psf : `lsst.meas.algorithms.coaddPsf.coaddPsf.CoaddPsf` or
861 `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
862 The PSF information to use to make the PSF images
863 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
864 Photometric calibration to be used to calibrate the fake sources
865 band : `str`
866 The filter band that the observation was taken in.
867 pixelScale : `float`
868 The pixel scale of the image the sources are to be added to.
869
870 Returns
871 -------
872 galImages : `list`
873 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
874 `lsst.geom.Point2D` of their locations.
875 For sources labelled as galaxy.
876 starImages : `list`
877 A list of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
878 `lsst.geom.Point2D` of their locations.
879 For sources labelled as star.
880
881 Notes
882 -----
883 The input fakes catalog needs to contain the absolute path to the image in the
884 band that is being used to add images to. It also needs to have the R.A. and
885 declination of the fake source in radians and the sourceType of the object.
886 """
887 galImages = []
888 starImages = []
889
890 self.log.info("Processing %d fake images", len(fakeCat))
891
892 for (imFile, sourceType, mag, x, y) in zip(fakeCat[band + "imFilename"].array,
893 fakeCat["sourceType"].array,
894 fakeCat['mag'].array,
895 fakeCat["x"].array, fakeCat["y"].array):
896
897 im = afwImage.ImageF.readFits(imFile)
898
899 xy = geom.Point2D(x, y)
900
901 # We put these two PSF calculations within this same try block so that we catch cases
902 # where the object's position is outside of the image.
903 try:
904 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
905 psfKernel = psf.computeKernelImage(xy).getArray()
906 psfKernel /= correctedFlux
907
908 except InvalidParameterError:
909 self.log.info("%s at %0.4f, %0.4f outside of image", sourceType, x, y)
910 continue
911
912 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
913 galsimIm = galsim.InterpolatedImage(galsim.Image(im.array), scale=pixelScale)
914 convIm = galsim.Convolve([galsimIm, psfIm])
915
916 try:
917 outIm = convIm.drawImage(scale=pixelScale, method="real_space").array
918 except (galsim.errors.GalSimFFTSizeError, MemoryError):
919 continue
920
921 imSum = np.sum(outIm)
922 divIm = outIm/imSum
923
924 try:
925 flux = photoCalib.magnitudeToInstFlux(mag, xy)
926 except LogicError:
927 flux = 0
928
929 imWithFlux = flux*divIm
930
931 if sourceType == b"galaxy":
932 galImages.append((afwImage.ImageF(imWithFlux), xy))
933 if sourceType == b"star":
934 starImages.append((afwImage.ImageF(imWithFlux), xy))
935
936 return galImages, starImages
937
938 def addPixCoords(self, fakeCat, image):
939
940 """Add pixel coordinates to the catalog of fakes.
941
942 Parameters
943 ----------
944 fakeCat : `pandas.core.frame.DataFrame`
945 The catalog of fake sources to be input
946 image : `lsst.afw.image.exposure.exposure.ExposureF`
947 The image into which the fake sources should be added
948
949 Returns
950 -------
951 fakeCat : `pandas.core.frame.DataFrame`
952 """
953 wcs = image.getWcs()
954 ras = fakeCat['ra'].values
955 decs = fakeCat['dec'].values
956 xs, ys = wcs.skyToPixelArray(ras, decs)
957 fakeCat["x"] = xs
958 fakeCat["y"] = ys
959
960 return fakeCat
961
962 def trimFakeCat(self, fakeCat, image):
963 """Trim the fake cat to about the size of the input image.
964
965 `fakeCat` must be processed with addPixCoords before using this method.
966
967 Parameters
968 ----------
969 fakeCat : `pandas.core.frame.DataFrame`
970 The catalog of fake sources to be input
971 image : `lsst.afw.image.exposure.exposure.ExposureF`
972 The image into which the fake sources should be added
973
974 Returns
975 -------
976 fakeCat : `pandas.core.frame.DataFrame`
977 The original fakeCat trimmed to the area of the image
978 """
979
980 bbox = Box2D(image.getBBox()).dilatedBy(self.config.trimBuffer)
981 xs = fakeCat["x"].values
982 ys = fakeCat["y"].values
983
984 isContained = xs >= bbox.minX
985 isContained &= xs <= bbox.maxX
986 isContained &= ys >= bbox.minY
987 isContained &= ys <= bbox.maxY
988
989 return fakeCat[isContained]
990
991 def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image):
992 """Make images of fake galaxies using GalSim.
993
994 Parameters
995 ----------
996 band : `str`
997 pixelScale : `float`
998 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
999 The PSF information to use to make the PSF images
1000 fakeCat : `pandas.core.frame.DataFrame`
1001 The catalog of fake sources to be input
1002 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1003 Photometric calibration to be used to calibrate the fake sources
1004
1005 Yields
1006 -------
1007 galImages : `generator`
1008 A generator of tuples of `lsst.afw.image.exposure.exposure.ExposureF` and
1009 `lsst.geom.Point2D` of their locations.
1010
1011 Notes
1012 -----
1013
1014 Fake galaxies are made by combining two sersic profiles, one for the bulge and one for the disk. Each
1015 component has an individual sersic index (n), a, b and position angle (PA). The combined profile is
1016 then convolved with the PSF at the specified x, y position on the image.
1017
1018 The names of the columns in the ``fakeCat`` are configurable and are the column names from the
1019 University of Washington simulations database as default. For more information see the doc strings
1020 attached to the config options.
1021
1022 See mkFakeStars doc string for an explanation of calibration to instrumental flux.
1023 """
1024
1025 self.log.info("Making %d fake galaxy images", len(fakeCat))
1026
1027 for (index, row) in fakeCat.iterrows():
1028 xy = geom.Point2D(row["x"], row["y"])
1029
1030 # We put these two PSF calculations within this same try block so that we catch cases
1031 # where the object's position is outside of the image.
1032 try:
1033 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1034 psfKernel = psf.computeKernelImage(xy).getArray()
1035 psfKernel /= correctedFlux
1036
1037 except InvalidParameterError:
1038 self.log.info("Galaxy at %0.4f, %0.4f outside of image", row["x"], row["y"])
1039 continue
1040
1041 try:
1042 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1043 except LogicError:
1044 flux = 0
1045
1046 # GalSim convention: HLR = sqrt(a * b) = a * sqrt(b / a)
1047 bulge_gs_HLR = row['bulge_semimajor']*np.sqrt(row['bulge_axis_ratio'])
1048 bulge = galsim.Sersic(n=row['bulge_n'], half_light_radius=bulge_gs_HLR)
1049 bulge = bulge.shear(q=row['bulge_axis_ratio'], beta=((90 - row['bulge_pa'])*galsim.degrees))
1050
1051 disk_gs_HLR = row['disk_semimajor']*np.sqrt(row['disk_axis_ratio'])
1052 disk = galsim.Sersic(n=row['disk_n'], half_light_radius=disk_gs_HLR)
1053 disk = disk.shear(q=row['disk_axis_ratio'], beta=((90 - row['disk_pa'])*galsim.degrees))
1054
1055 gal = bulge*row['bulge_disk_flux_ratio'] + disk
1056 gal = gal.withFlux(flux)
1057
1058 psfIm = galsim.InterpolatedImage(galsim.Image(psfKernel), scale=pixelScale)
1059 gal = galsim.Convolve([gal, psfIm])
1060 try:
1061 galIm = gal.drawImage(scale=pixelScale, method="real_space").array
1062 except (galsim.errors.GalSimFFTSizeError, MemoryError):
1063 continue
1064
1065 yield (afwImage.ImageF(galIm), xy)
1066
1067 def mkFakeStars(self, fakeCat, band, photoCalib, psf, image):
1068
1069 """Make fake stars based off the properties in the fakeCat.
1070
1071 Parameters
1072 ----------
1073 band : `str`
1074 psf : `lsst.meas.extensions.psfex.psfexPsf.PsfexPsf`
1075 The PSF information to use to make the PSF images
1076 fakeCat : `pandas.core.frame.DataFrame`
1077 The catalog of fake sources to be input
1078 image : `lsst.afw.image.exposure.exposure.ExposureF`
1079 The image into which the fake sources should be added
1080 photoCalib : `lsst.afw.image.photoCalib.PhotoCalib`
1081 Photometric calibration to be used to calibrate the fake sources
1082
1083 Yields
1084 -------
1085 starImages : `generator`
1086 A generator of tuples of `lsst.afw.image.ImageF` of fake stars and
1087 `lsst.geom.Point2D` of their locations.
1088
1089 Notes
1090 -----
1091 To take a given magnitude and translate to the number of counts in the image
1092 we use photoCalib.magnitudeToInstFlux, which returns the instrumental flux for the
1093 given calibration radius used in the photometric calibration step.
1094 Thus `calibFluxRadius` should be set to this same radius so that we can normalize
1095 the PSF model to the correct instrumental flux within calibFluxRadius.
1096 """
1097
1098 self.log.info("Making %d fake star images", len(fakeCat))
1099
1100 for (index, row) in fakeCat.iterrows():
1101 xy = geom.Point2D(row["x"], row["y"])
1102
1103 # We put these two PSF calculations within this same try block so that we catch cases
1104 # where the object's position is outside of the image.
1105 try:
1106 correctedFlux = psf.computeApertureFlux(self.config.calibFluxRadius, xy)
1107 starIm = psf.computeImage(xy)
1108 starIm /= correctedFlux
1109
1110 except InvalidParameterError:
1111 self.log.info("Star at %0.4f, %0.4f outside of image", row["x"], row["y"])
1112 continue
1113
1114 try:
1115 flux = photoCalib.magnitudeToInstFlux(row['mag'], xy)
1116 except LogicError:
1117 flux = 0
1118
1119 starIm *= flux
1120 yield ((starIm.convertF(), xy))
1121
1122 def cleanCat(self, fakeCat, starCheckVal):
1123 """Remove rows from the fakes catalog which have HLR = 0 for either the buldge or disk component,
1124 also remove galaxies that have Sersic index outside the galsim min and max
1125 allowed (0.3 <= n <= 6.2).
1126
1127 Parameters
1128 ----------
1129 fakeCat : `pandas.core.frame.DataFrame`
1130 The catalog of fake sources to be input
1131 starCheckVal : `str`, `bytes` or `int`
1132 The value that is set in the sourceType column to specifiy an object is a star.
1133
1134 Returns
1135 -------
1136 fakeCat : `pandas.core.frame.DataFrame`
1137 The input catalog of fake sources but with the bad objects removed
1138 """
1139
1140 rowsToKeep = (((fakeCat['bulge_semimajor'] != 0.0) & (fakeCat['disk_semimajor'] != 0.0))
1141 | (fakeCat[self.config.sourceType] == starCheckVal))
1142 numRowsNotUsed = len(fakeCat) - len(np.where(rowsToKeep)[0])
1143 self.log.info("Removing %d rows with HLR = 0 for either the bulge or disk", numRowsNotUsed)
1144 fakeCat = fakeCat[rowsToKeep]
1145
1146 minN = galsim.Sersic._minimum_n
1147 maxN = galsim.Sersic._maximum_n
1148 rowsWithGoodSersic = (((fakeCat['bulge_n'] >= minN) & (fakeCat['bulge_n'] <= maxN)
1149 & (fakeCat['disk_n'] >= minN) & (fakeCat['disk_n'] <= maxN))
1150 | (fakeCat[self.config.sourceType] == starCheckVal))
1151 numRowsNotUsed = len(fakeCat) - len(np.where(rowsWithGoodSersic)[0])
1152 self.log.info("Removing %d rows of galaxies with nBulge or nDisk outside of %0.2f <= n <= %0.2f",
1153 numRowsNotUsed, minN, maxN)
1154 fakeCat = fakeCat[rowsWithGoodSersic]
1155
1156 if self.config.doSubSelectSources:
1157 numRowsNotUsed = len(fakeCat) - len(fakeCat['select'])
1158 self.log.info("Removing %d rows which were not designated as template sources", numRowsNotUsed)
1159 fakeCat = fakeCat[fakeCat['select']]
1160
1161 return fakeCat
1162
1163 def addFakeSources(self, image, fakeImages, sourceType):
1164 """Add the fake sources to the given image
1165
1166 Parameters
1167 ----------
1168 image : `lsst.afw.image.exposure.exposure.ExposureF`
1169 The image into which the fake sources should be added
1170 fakeImages : `typing.Iterator` [`tuple` ['lsst.afw.image.ImageF`, `lsst.geom.Point2d`]]
1171 An iterator of tuples that contains (or generates) images of fake sources,
1172 and the locations they are to be inserted at.
1173 sourceType : `str`
1174 The type (star/galaxy) of fake sources input
1175
1176 Returns
1177 -------
1178 image : `lsst.afw.image.exposure.exposure.ExposureF`
1179
1180 Notes
1181 -----
1182 Uses the x, y information in the ``fakeCat`` to position an image of the fake interpolated onto the
1183 pixel grid of the image. Sets the ``FAKE`` mask plane for the pixels added with the fake source.
1184 """
1185
1186 imageBBox = image.getBBox()
1187 imageMI = image.maskedImage
1188
1189 for (fakeImage, xy) in fakeImages:
1190 X0 = xy.getX() - fakeImage.getWidth()/2 + 0.5
1191 Y0 = xy.getY() - fakeImage.getHeight()/2 + 0.5
1192 self.log.debug("Adding fake source at %d, %d", xy.getX(), xy.getY())
1193 if sourceType == "galaxy":
1194 interpFakeImage = afwMath.offsetImage(fakeImage, X0, Y0, "lanczos3")
1195 else:
1196 interpFakeImage = fakeImage
1197
1198 interpFakeImBBox = interpFakeImage.getBBox()
1199 interpFakeImBBox.clip(imageBBox)
1200
1201 if interpFakeImBBox.getArea() > 0:
1202 imageMIView = imageMI[interpFakeImBBox]
1203 clippedFakeImage = interpFakeImage[interpFakeImBBox]
1204 clippedFakeImageMI = afwImage.MaskedImageF(clippedFakeImage)
1205 clippedFakeImageMI.mask.set(self.bitmask)
1206 imageMIView += clippedFakeImageMI
1207
1208 return image
1209
1210 def _getMetadataName(self):
1211 """Disable metadata writing"""
1212 return None
def addPixCoords(self, fakeCat, image)
Definition: insertFakes.py:938
def mkFakeStars(self, fakeCat, band, photoCalib, psf, image)
def mkFakeGalsimGalaxies(self, fakeCat, band, photoCalib, pixelScale, psf, image)
Definition: insertFakes.py:991
def cleanCat(self, fakeCat, starCheckVal)
def processImagesForInsertion(self, fakeCat, wcs, psf, photoCalib, band, pixelScale)
Definition: insertFakes.py:851
def trimFakeCat(self, fakeCat, image)
Definition: insertFakes.py:962
def addFakeSources(self, image, fakeImages, sourceType)