Hide keyboard shortcuts

Hot-keys on this page

r m x p   toggle line displays

j k   next/prev highlighted chunk

0   (zero) top of page

1   (one) first highlighted chunk

1# This file is part of pipe_base. 

2# 

3# Developed for the LSST Data Management System. 

4# This product includes software developed by the LSST Project 

5# (http://www.lsst.org). 

6# See the COPYRIGHT file at the top-level directory of this distribution 

7# for details of code ownership. 

8# 

9# This program is free software: you can redistribute it and/or modify 

10# it under the terms of the GNU General Public License as published by 

11# the Free Software Foundation, either version 3 of the License, or 

12# (at your option) any later version. 

13# 

14# This program is distributed in the hope that it will be useful, 

15# but WITHOUT ANY WARRANTY; without even the implied warranty of 

16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 

17# GNU General Public License for more details. 

18# 

19# You should have received a copy of the GNU General Public License 

20# along with this program. If not, see <http://www.gnu.org/licenses/>. 

21 

22"""Module defining a butler like object specialized to a specific quantum. 

23""" 

24 

25__all__ = ("ButlerQuantumContext",) 

26 

27from .connections import InputQuantizedConnection, OutputQuantizedConnection, DeferredDatasetRef 

28from .struct import Struct 

29from lsst.daf.butler import DatasetRef, Butler, Quantum 

30 

31from typing import Any, Union, List, Sequence 

32 

33 

34class ButlerQuantumContext: 

35 """A Butler-like class specialized for a single quantum 

36 

37 A ButlerQuantumContext class wraps a standard butler interface and 

38 specializes it to the context of a given quantum. What this means 

39 in practice is that the only gets and puts that this class allows 

40 are DatasetRefs that are contained in the quantum. 

41 

42 In the future this class will also be used to record provenance on 

43 what was actually get and put. This is in contrast to what the 

44 preflight expects to be get and put by looking at the graph before 

45 execution. 

46 

47 Parameters 

48 ---------- 

49 butler : `lsst.daf.butler.Butler` 

50 Butler object from/to which datasets will be get/put 

51 quantum : `lsst.daf.butler.core.Quantum` 

52 Quantum object that describes the datasets which will be get/put by a 

53 single execution of this node in the pipeline graph. All input 

54 dataset references must be resolved (i.e. satisfy 

55 ``DatasetRef.id is not None``) prior to constructing the 

56 `ButlerQuantumContext`. 

57 

58 Notes 

59 ----- 

60 Most quanta in any non-trivial graph will not start with resolved dataset 

61 references, because they represent processing steps that can only run 

62 after some other quanta have produced their inputs. At present, it is the 

63 responsibility of ``lsst.ctrl.mpexec.SingleQuantumExecutor`` to resolve all 

64 datasets prior to constructing `ButlerQuantumContext` and calling 

65 `runQuantum`, and the fact that this precondition is satisfied by code in 

66 a downstream package is considered a problem with the 

67 ``pipe_base/ctrl_mpexec`` separation of concerns that will be addressed in 

68 the future. 

69 """ 

70 def __init__(self, butler: Butler, quantum: Quantum): 

71 self.quantum = quantum 

72 self.registry = butler.registry 

73 self.allInputs = set() 

74 self.allOutputs = set() 

75 for refs in quantum.inputs.values(): 

76 for ref in refs: 

77 self.allInputs.add((ref.datasetType, ref.dataId)) 

78 for refs in quantum.outputs.values(): 

79 for ref in refs: 

80 self.allOutputs.add((ref.datasetType, ref.dataId)) 

81 self.__butler = butler 

82 

83 def _get(self, ref: DatasetRef) -> Any: 

84 # Butler methods below will check for unresolved DatasetRefs and 

85 # raise appropriately, so no need for us to do that here. 

86 if isinstance(ref, DeferredDatasetRef): 

87 self._checkMembership(ref.datasetRef, self.allInputs) 

88 return self.__butler.getDirectDeferred(ref.datasetRef) 

89 

90 else: 

91 self._checkMembership(ref, self.allInputs) 

92 return self.__butler.getDirect(ref) 

93 

94 def _put(self, value: Any, ref: DatasetRef): 

95 self._checkMembership(ref, self.allOutputs) 

96 self.__butler.put(value, ref) 

97 

98 def get(self, dataset: Union[InputQuantizedConnection, List[DatasetRef], DatasetRef]) -> Any: 

99 """Fetches data from the butler 

100 

101 Parameters 

102 ---------- 

103 dataset 

104 This argument may either be an `InputQuantizedConnection` which 

105 describes all the inputs of a quantum, a list of 

106 `~lsst.daf.butler.DatasetRef`, or a single 

107 `~lsst.daf.butler.DatasetRef`. The function will get and return 

108 the corresponding datasets from the butler. 

109 

110 Returns 

111 ------- 

112 return : `object` 

113 This function returns arbitrary objects fetched from the bulter. 

114 The structure these objects are returned in depends on the type of 

115 the input argument. If the input dataset argument is a 

116 `InputQuantizedConnection`, then the return type will be a 

117 dictionary with keys corresponding to the attributes of the 

118 `InputQuantizedConnection` (which in turn are the attribute 

119 identifiers of the connections). If the input argument is of type 

120 `list` of `~lsst.daf.butler.DatasetRef` then the return type will 

121 be a list of objects. If the input argument is a single 

122 `~lsst.daf.butler.DatasetRef` then a single object will be 

123 returned. 

124 

125 Raises 

126 ------ 

127 ValueError 

128 Raised if a `DatasetRef` is passed to get that is not defined in 

129 the quantum object 

130 """ 

131 if isinstance(dataset, InputQuantizedConnection): 

132 retVal = {} 

133 for name, ref in dataset: 

134 if isinstance(ref, list): 

135 val = [self._get(r) for r in ref] 

136 else: 

137 val = self._get(ref) 

138 retVal[name] = val 

139 return retVal 

140 elif isinstance(dataset, list): 

141 return [self._get(x) for x in dataset] 

142 elif isinstance(dataset, DatasetRef) or isinstance(dataset, DeferredDatasetRef): 

143 return self._get(dataset) 

144 else: 

145 raise TypeError("Dataset argument is not a type that can be used to get") 

146 

147 def put(self, values: Union[Struct, List[Any], Any], 

148 dataset: Union[OutputQuantizedConnection, List[DatasetRef], DatasetRef]): 

149 """Puts data into the butler 

150 

151 Parameters 

152 ---------- 

153 values : `Struct` or `list` of `object` or `object` 

154 The data that should be put with the butler. If the type of the 

155 dataset is `OutputQuantizedConnection` then this argument should be 

156 a `Struct` with corresponding attribute names. Each attribute 

157 should then correspond to either a list of object or a single 

158 object depending of the type of the corresponding attribute on 

159 dataset. I.e. if ``dataset.calexp`` is 

160 ``[datasetRef1, datasetRef2]`` then ``values.calexp`` should be 

161 ``[calexp1, calexp2]``. Like wise if there is a single ref, then 

162 only a single object need be passed. The same restriction applies 

163 if dataset is directly a `list` of `DatasetRef` or a single 

164 `DatasetRef`. 

165 dataset 

166 This argument may either be an `InputQuantizedConnection` which 

167 describes all the inputs of a quantum, a list of 

168 `lsst.daf.butler.DatasetRef`, or a single 

169 `lsst.daf.butler.DatasetRef`. The function will get and return 

170 the corresponding datasets from the butler. 

171 

172 Raises 

173 ------ 

174 ValueError 

175 Raised if a `DatasetRef` is passed to put that is not defined in 

176 the quantum object, or the type of values does not match what is 

177 expected from the type of dataset. 

178 """ 

179 if isinstance(dataset, OutputQuantizedConnection): 

180 if not isinstance(values, Struct): 

181 raise ValueError("dataset is a OutputQuantizedConnection, a Struct with corresponding" 

182 " attributes must be passed as the values to put") 

183 for name, refs in dataset: 

184 valuesAttribute = getattr(values, name) 

185 if isinstance(refs, list): 

186 if len(refs) != len(valuesAttribute): 

187 raise ValueError(f"There must be a object to put for every Dataset ref in {name}") 

188 for i, ref in enumerate(refs): 

189 self._put(valuesAttribute[i], ref) 

190 else: 

191 self._put(valuesAttribute, refs) 

192 elif isinstance(dataset, list): 

193 if not isinstance(values, Sequence): 

194 raise ValueError("Values to put must be a sequence") 

195 if len(dataset) != len(values): 

196 raise ValueError("There must be a common number of references and values to put") 

197 for i, ref in enumerate(dataset): 

198 self._put(values[i], ref) 

199 elif isinstance(dataset, DatasetRef): 

200 self._put(values, dataset) 

201 else: 

202 raise TypeError("Dataset argument is not a type that can be used to put") 

203 

204 def _checkMembership(self, ref: Union[List[DatasetRef], DatasetRef], inout: set): 

205 """Internal function used to check if a DatasetRef is part of the input 

206 quantum 

207 

208 This function will raise an exception if the ButlerQuantumContext is 

209 used to get/put a DatasetRef which is not defined in the quantum. 

210 

211 Parameters 

212 ---------- 

213 ref : `list` of `DatasetRef` or `DatasetRef` 

214 Either a list or a single `DatasetRef` to check 

215 inout : `set` 

216 The connection type to check, e.g. either an input or an output. 

217 This prevents both types needing to be checked for every operation, 

218 which may be important for Quanta with lots of `DatasetRef`. 

219 """ 

220 if not isinstance(ref, list): 

221 ref = [ref] 

222 for r in ref: 

223 if (r.datasetType, r.dataId) not in inout: 

224 raise ValueError("DatasetRef is not part of the Quantum being processed")