Coverage for python/lsst/ip/isr/isrTask.py: 16%
Shortcuts on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
Shortcuts on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of ip_isr.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (https://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <https://www.gnu.org/licenses/>.
22import math
23import numpy
25import lsst.geom
26import lsst.afw.image as afwImage
27import lsst.afw.math as afwMath
28import lsst.pex.config as pexConfig
29import lsst.pipe.base as pipeBase
30import lsst.pipe.base.connectionTypes as cT
32from contextlib import contextmanager
33from lsstDebug import getDebugFrame
35from lsst.afw.cameraGeom import (PIXELS, FOCAL_PLANE, NullLinearityType,
36 ReadoutCorner)
37from lsst.afw.display import getDisplay
38from lsst.afw.geom import Polygon
39from lsst.daf.persistence import ButlerDataRef
40from lsst.daf.persistence.butler import NoResults
41from lsst.meas.algorithms.detection import SourceDetectionTask
42from lsst.utils.timer import timeMethod
44from . import isrFunctions
45from . import isrQa
46from . import linearize
47from .defects import Defects
49from .assembleCcdTask import AssembleCcdTask
50from .crosstalk import CrosstalkTask, CrosstalkCalib
51from .fringe import FringeTask
52from .isr import maskNans
53from .masking import MaskingTask
54from .overscan import OverscanCorrectionTask
55from .straylight import StrayLightTask
56from .vignette import VignetteTask
57from .ampOffset import AmpOffsetTask
58from lsst.daf.butler import DimensionGraph
61__all__ = ["IsrTask", "IsrTaskConfig", "RunIsrTask", "RunIsrConfig"]
64def crosstalkSourceLookup(datasetType, registry, quantumDataId, collections):
65 """Lookup function to identify crosstalkSource entries.
67 This should return an empty list under most circumstances. Only
68 when inter-chip crosstalk has been identified should this be
69 populated.
71 Parameters
72 ----------
73 datasetType : `str`
74 Dataset to lookup.
75 registry : `lsst.daf.butler.Registry`
76 Butler registry to query.
77 quantumDataId : `lsst.daf.butler.ExpandedDataCoordinate`
78 Data id to transform to identify crosstalkSources. The
79 ``detector`` entry will be stripped.
80 collections : `lsst.daf.butler.CollectionSearch`
81 Collections to search through.
83 Returns
84 -------
85 results : `list` [`lsst.daf.butler.DatasetRef`]
86 List of datasets that match the query that will be used as
87 crosstalkSources.
88 """
89 newDataId = quantumDataId.subset(DimensionGraph(registry.dimensions, names=["instrument", "exposure"]))
90 results = set(registry.queryDatasets(datasetType, collections=collections, dataId=newDataId,
91 findFirst=True))
92 # In some contexts, calling `.expanded()` to expand all data IDs in the
93 # query results can be a lot faster because it vectorizes lookups. But in
94 # this case, expandDataId shouldn't need to hit the database at all in the
95 # steady state, because only the detector record is unknown and those are
96 # cached in the registry.
97 return [ref.expanded(registry.expandDataId(ref.dataId, records=newDataId.records)) for ref in results]
100class IsrTaskConnections(pipeBase.PipelineTaskConnections,
101 dimensions={"instrument", "exposure", "detector"},
102 defaultTemplates={}):
103 ccdExposure = cT.Input(
104 name="raw",
105 doc="Input exposure to process.",
106 storageClass="Exposure",
107 dimensions=["instrument", "exposure", "detector"],
108 )
109 camera = cT.PrerequisiteInput(
110 name="camera",
111 storageClass="Camera",
112 doc="Input camera to construct complete exposures.",
113 dimensions=["instrument"],
114 isCalibration=True,
115 )
117 crosstalk = cT.PrerequisiteInput(
118 name="crosstalk",
119 doc="Input crosstalk object",
120 storageClass="CrosstalkCalib",
121 dimensions=["instrument", "detector"],
122 isCalibration=True,
123 minimum=0, # can fall back to cameraGeom
124 )
125 crosstalkSources = cT.PrerequisiteInput(
126 name="isrOverscanCorrected",
127 doc="Overscan corrected input images.",
128 storageClass="Exposure",
129 dimensions=["instrument", "exposure", "detector"],
130 deferLoad=True,
131 multiple=True,
132 lookupFunction=crosstalkSourceLookup,
133 minimum=0, # not needed for all instruments, no config to control this
134 )
135 bias = cT.PrerequisiteInput(
136 name="bias",
137 doc="Input bias calibration.",
138 storageClass="ExposureF",
139 dimensions=["instrument", "detector"],
140 isCalibration=True,
141 )
142 dark = cT.PrerequisiteInput(
143 name='dark',
144 doc="Input dark calibration.",
145 storageClass="ExposureF",
146 dimensions=["instrument", "detector"],
147 isCalibration=True,
148 )
149 flat = cT.PrerequisiteInput(
150 name="flat",
151 doc="Input flat calibration.",
152 storageClass="ExposureF",
153 dimensions=["instrument", "physical_filter", "detector"],
154 isCalibration=True,
155 )
156 ptc = cT.PrerequisiteInput(
157 name="ptc",
158 doc="Input Photon Transfer Curve dataset",
159 storageClass="PhotonTransferCurveDataset",
160 dimensions=["instrument", "detector"],
161 isCalibration=True,
162 )
163 fringes = cT.PrerequisiteInput(
164 name="fringe",
165 doc="Input fringe calibration.",
166 storageClass="ExposureF",
167 dimensions=["instrument", "physical_filter", "detector"],
168 isCalibration=True,
169 minimum=0, # only needed for some bands, even when enabled
170 )
171 strayLightData = cT.PrerequisiteInput(
172 name='yBackground',
173 doc="Input stray light calibration.",
174 storageClass="StrayLightData",
175 dimensions=["instrument", "physical_filter", "detector"],
176 deferLoad=True,
177 isCalibration=True,
178 minimum=0, # only needed for some bands, even when enabled
179 )
180 bfKernel = cT.PrerequisiteInput(
181 name='bfKernel',
182 doc="Input brighter-fatter kernel.",
183 storageClass="NumpyArray",
184 dimensions=["instrument"],
185 isCalibration=True,
186 minimum=0, # can use either bfKernel or newBFKernel
187 )
188 newBFKernel = cT.PrerequisiteInput(
189 name='brighterFatterKernel',
190 doc="Newer complete kernel + gain solutions.",
191 storageClass="BrighterFatterKernel",
192 dimensions=["instrument", "detector"],
193 isCalibration=True,
194 minimum=0, # can use either bfKernel or newBFKernel
195 )
196 defects = cT.PrerequisiteInput(
197 name='defects',
198 doc="Input defect tables.",
199 storageClass="Defects",
200 dimensions=["instrument", "detector"],
201 isCalibration=True,
202 )
203 linearizer = cT.PrerequisiteInput(
204 name='linearizer',
205 storageClass="Linearizer",
206 doc="Linearity correction calibration.",
207 dimensions=["instrument", "detector"],
208 isCalibration=True,
209 minimum=0, # can fall back to cameraGeom
210 )
211 opticsTransmission = cT.PrerequisiteInput(
212 name="transmission_optics",
213 storageClass="TransmissionCurve",
214 doc="Transmission curve due to the optics.",
215 dimensions=["instrument"],
216 isCalibration=True,
217 )
218 filterTransmission = cT.PrerequisiteInput(
219 name="transmission_filter",
220 storageClass="TransmissionCurve",
221 doc="Transmission curve due to the filter.",
222 dimensions=["instrument", "physical_filter"],
223 isCalibration=True,
224 )
225 sensorTransmission = cT.PrerequisiteInput(
226 name="transmission_sensor",
227 storageClass="TransmissionCurve",
228 doc="Transmission curve due to the sensor.",
229 dimensions=["instrument", "detector"],
230 isCalibration=True,
231 )
232 atmosphereTransmission = cT.PrerequisiteInput(
233 name="transmission_atmosphere",
234 storageClass="TransmissionCurve",
235 doc="Transmission curve due to the atmosphere.",
236 dimensions=["instrument"],
237 isCalibration=True,
238 )
239 illumMaskedImage = cT.PrerequisiteInput(
240 name="illum",
241 doc="Input illumination correction.",
242 storageClass="MaskedImageF",
243 dimensions=["instrument", "physical_filter", "detector"],
244 isCalibration=True,
245 )
247 outputExposure = cT.Output(
248 name='postISRCCD',
249 doc="Output ISR processed exposure.",
250 storageClass="Exposure",
251 dimensions=["instrument", "exposure", "detector"],
252 )
253 preInterpExposure = cT.Output(
254 name='preInterpISRCCD',
255 doc="Output ISR processed exposure, with pixels left uninterpolated.",
256 storageClass="ExposureF",
257 dimensions=["instrument", "exposure", "detector"],
258 )
259 outputOssThumbnail = cT.Output(
260 name="OssThumb",
261 doc="Output Overscan-subtracted thumbnail image.",
262 storageClass="Thumbnail",
263 dimensions=["instrument", "exposure", "detector"],
264 )
265 outputFlattenedThumbnail = cT.Output(
266 name="FlattenedThumb",
267 doc="Output flat-corrected thumbnail image.",
268 storageClass="Thumbnail",
269 dimensions=["instrument", "exposure", "detector"],
270 )
272 def __init__(self, *, config=None):
273 super().__init__(config=config)
275 if config.doBias is not True:
276 self.prerequisiteInputs.discard("bias")
277 if config.doLinearize is not True:
278 self.prerequisiteInputs.discard("linearizer")
279 if config.doCrosstalk is not True:
280 self.prerequisiteInputs.discard("crosstalkSources")
281 self.prerequisiteInputs.discard("crosstalk")
282 if config.doBrighterFatter is not True:
283 self.prerequisiteInputs.discard("bfKernel")
284 self.prerequisiteInputs.discard("newBFKernel")
285 if config.doDefect is not True:
286 self.prerequisiteInputs.discard("defects")
287 if config.doDark is not True:
288 self.prerequisiteInputs.discard("dark")
289 if config.doFlat is not True:
290 self.prerequisiteInputs.discard("flat")
291 if config.doFringe is not True:
292 self.prerequisiteInputs.discard("fringe")
293 if config.doStrayLight is not True:
294 self.prerequisiteInputs.discard("strayLightData")
295 if config.usePtcGains is not True and config.usePtcReadNoise is not True:
296 self.prerequisiteInputs.discard("ptc")
297 if config.doAttachTransmissionCurve is not True:
298 self.prerequisiteInputs.discard("opticsTransmission")
299 self.prerequisiteInputs.discard("filterTransmission")
300 self.prerequisiteInputs.discard("sensorTransmission")
301 self.prerequisiteInputs.discard("atmosphereTransmission")
302 if config.doUseOpticsTransmission is not True:
303 self.prerequisiteInputs.discard("opticsTransmission")
304 if config.doUseFilterTransmission is not True:
305 self.prerequisiteInputs.discard("filterTransmission")
306 if config.doUseSensorTransmission is not True:
307 self.prerequisiteInputs.discard("sensorTransmission")
308 if config.doUseAtmosphereTransmission is not True:
309 self.prerequisiteInputs.discard("atmosphereTransmission")
310 if config.doIlluminationCorrection is not True:
311 self.prerequisiteInputs.discard("illumMaskedImage")
313 if config.doWrite is not True:
314 self.outputs.discard("outputExposure")
315 self.outputs.discard("preInterpExposure")
316 self.outputs.discard("outputFlattenedThumbnail")
317 self.outputs.discard("outputOssThumbnail")
318 if config.doSaveInterpPixels is not True:
319 self.outputs.discard("preInterpExposure")
320 if config.qa.doThumbnailOss is not True:
321 self.outputs.discard("outputOssThumbnail")
322 if config.qa.doThumbnailFlattened is not True:
323 self.outputs.discard("outputFlattenedThumbnail")
326class IsrTaskConfig(pipeBase.PipelineTaskConfig,
327 pipelineConnections=IsrTaskConnections):
328 """Configuration parameters for IsrTask.
330 Items are grouped in the order in which they are executed by the task.
331 """
332 datasetType = pexConfig.Field(
333 dtype=str,
334 doc="Dataset type for input data; users will typically leave this alone, "
335 "but camera-specific ISR tasks will override it",
336 default="raw",
337 )
339 fallbackFilterName = pexConfig.Field(
340 dtype=str,
341 doc="Fallback default filter name for calibrations.",
342 optional=True
343 )
344 useFallbackDate = pexConfig.Field(
345 dtype=bool,
346 doc="Pass observation date when using fallback filter.",
347 default=False,
348 )
349 expectWcs = pexConfig.Field(
350 dtype=bool,
351 default=True,
352 doc="Expect input science images to have a WCS (set False for e.g. spectrographs)."
353 )
354 fwhm = pexConfig.Field(
355 dtype=float,
356 doc="FWHM of PSF in arcseconds.",
357 default=1.0,
358 )
359 qa = pexConfig.ConfigField(
360 dtype=isrQa.IsrQaConfig,
361 doc="QA related configuration options.",
362 )
364 # Image conversion configuration
365 doConvertIntToFloat = pexConfig.Field(
366 dtype=bool,
367 doc="Convert integer raw images to floating point values?",
368 default=True,
369 )
371 # Saturated pixel handling.
372 doSaturation = pexConfig.Field(
373 dtype=bool,
374 doc="Mask saturated pixels? NB: this is totally independent of the"
375 " interpolation option - this is ONLY setting the bits in the mask."
376 " To have them interpolated make sure doSaturationInterpolation=True",
377 default=True,
378 )
379 saturatedMaskName = pexConfig.Field(
380 dtype=str,
381 doc="Name of mask plane to use in saturation detection and interpolation",
382 default="SAT",
383 )
384 saturation = pexConfig.Field(
385 dtype=float,
386 doc="The saturation level to use if no Detector is present in the Exposure (ignored if NaN)",
387 default=float("NaN"),
388 )
389 growSaturationFootprintSize = pexConfig.Field(
390 dtype=int,
391 doc="Number of pixels by which to grow the saturation footprints",
392 default=1,
393 )
395 # Suspect pixel handling.
396 doSuspect = pexConfig.Field(
397 dtype=bool,
398 doc="Mask suspect pixels?",
399 default=False,
400 )
401 suspectMaskName = pexConfig.Field(
402 dtype=str,
403 doc="Name of mask plane to use for suspect pixels",
404 default="SUSPECT",
405 )
406 numEdgeSuspect = pexConfig.Field(
407 dtype=int,
408 doc="Number of edge pixels to be flagged as untrustworthy.",
409 default=0,
410 )
411 edgeMaskLevel = pexConfig.ChoiceField(
412 dtype=str,
413 doc="Mask edge pixels in which coordinate frame: DETECTOR or AMP?",
414 default="DETECTOR",
415 allowed={
416 'DETECTOR': 'Mask only the edges of the full detector.',
417 'AMP': 'Mask edges of each amplifier.',
418 },
419 )
421 # Initial masking options.
422 doSetBadRegions = pexConfig.Field(
423 dtype=bool,
424 doc="Should we set the level of all BAD patches of the chip to the chip's average value?",
425 default=True,
426 )
427 badStatistic = pexConfig.ChoiceField(
428 dtype=str,
429 doc="How to estimate the average value for BAD regions.",
430 default='MEANCLIP',
431 allowed={
432 "MEANCLIP": "Correct using the (clipped) mean of good data",
433 "MEDIAN": "Correct using the median of the good data",
434 },
435 )
437 # Overscan subtraction configuration.
438 doOverscan = pexConfig.Field(
439 dtype=bool,
440 doc="Do overscan subtraction?",
441 default=True,
442 )
443 overscan = pexConfig.ConfigurableField(
444 target=OverscanCorrectionTask,
445 doc="Overscan subtraction task for image segments.",
446 )
447 overscanFitType = pexConfig.ChoiceField(
448 dtype=str,
449 doc="The method for fitting the overscan bias level.",
450 default='MEDIAN',
451 allowed={
452 "POLY": "Fit ordinary polynomial to the longest axis of the overscan region",
453 "CHEB": "Fit Chebyshev polynomial to the longest axis of the overscan region",
454 "LEG": "Fit Legendre polynomial to the longest axis of the overscan region",
455 "NATURAL_SPLINE": "Fit natural spline to the longest axis of the overscan region",
456 "CUBIC_SPLINE": "Fit cubic spline to the longest axis of the overscan region",
457 "AKIMA_SPLINE": "Fit Akima spline to the longest axis of the overscan region",
458 "MEAN": "Correct using the mean of the overscan region",
459 "MEANCLIP": "Correct using a clipped mean of the overscan region",
460 "MEDIAN": "Correct using the median of the overscan region",
461 "MEDIAN_PER_ROW": "Correct using the median per row of the overscan region",
462 },
463 deprecated=("Please configure overscan via the OverscanCorrectionConfig interface."
464 " This option will no longer be used, and will be removed after v20.")
465 )
466 overscanOrder = pexConfig.Field(
467 dtype=int,
468 doc=("Order of polynomial or to fit if overscan fit type is a polynomial, "
469 "or number of spline knots if overscan fit type is a spline."),
470 default=1,
471 deprecated=("Please configure overscan via the OverscanCorrectionConfig interface."
472 " This option will no longer be used, and will be removed after v20.")
473 )
474 overscanNumSigmaClip = pexConfig.Field(
475 dtype=float,
476 doc="Rejection threshold (sigma) for collapsing overscan before fit",
477 default=3.0,
478 deprecated=("Please configure overscan via the OverscanCorrectionConfig interface."
479 " This option will no longer be used, and will be removed after v20.")
480 )
481 overscanIsInt = pexConfig.Field(
482 dtype=bool,
483 doc="Treat overscan as an integer image for purposes of overscan.FitType=MEDIAN"
484 " and overscan.FitType=MEDIAN_PER_ROW.",
485 default=True,
486 deprecated=("Please configure overscan via the OverscanCorrectionConfig interface."
487 " This option will no longer be used, and will be removed after v20.")
488 )
489 # These options do not get deprecated, as they define how we slice up the
490 # image data.
491 overscanNumLeadingColumnsToSkip = pexConfig.Field(
492 dtype=int,
493 doc="Number of columns to skip in overscan, i.e. those closest to amplifier",
494 default=0,
495 )
496 overscanNumTrailingColumnsToSkip = pexConfig.Field(
497 dtype=int,
498 doc="Number of columns to skip in overscan, i.e. those farthest from amplifier",
499 default=0,
500 )
501 overscanMaxDev = pexConfig.Field( 501 ↛ exitline 501 didn't jump to the function exit
502 dtype=float,
503 doc="Maximum deviation from the median for overscan",
504 default=1000.0, check=lambda x: x > 0
505 )
506 overscanBiasJump = pexConfig.Field(
507 dtype=bool,
508 doc="Fit the overscan in a piecewise-fashion to correct for bias jumps?",
509 default=False,
510 )
511 overscanBiasJumpKeyword = pexConfig.Field(
512 dtype=str,
513 doc="Header keyword containing information about devices.",
514 default="NO_SUCH_KEY",
515 )
516 overscanBiasJumpDevices = pexConfig.ListField(
517 dtype=str,
518 doc="List of devices that need piecewise overscan correction.",
519 default=(),
520 )
521 overscanBiasJumpLocation = pexConfig.Field(
522 dtype=int,
523 doc="Location of bias jump along y-axis.",
524 default=0,
525 )
527 # Amplifier to CCD assembly configuration
528 doAssembleCcd = pexConfig.Field(
529 dtype=bool,
530 default=True,
531 doc="Assemble amp-level exposures into a ccd-level exposure?"
532 )
533 assembleCcd = pexConfig.ConfigurableField(
534 target=AssembleCcdTask,
535 doc="CCD assembly task",
536 )
538 # General calibration configuration.
539 doAssembleIsrExposures = pexConfig.Field(
540 dtype=bool,
541 default=False,
542 doc="Assemble amp-level calibration exposures into ccd-level exposure?"
543 )
544 doTrimToMatchCalib = pexConfig.Field(
545 dtype=bool,
546 default=False,
547 doc="Trim raw data to match calibration bounding boxes?"
548 )
550 # Bias subtraction.
551 doBias = pexConfig.Field(
552 dtype=bool,
553 doc="Apply bias frame correction?",
554 default=True,
555 )
556 biasDataProductName = pexConfig.Field(
557 dtype=str,
558 doc="Name of the bias data product",
559 default="bias",
560 )
561 doBiasBeforeOverscan = pexConfig.Field(
562 dtype=bool,
563 doc="Reverse order of overscan and bias correction.",
564 default=False
565 )
567 # Variance construction
568 doVariance = pexConfig.Field(
569 dtype=bool,
570 doc="Calculate variance?",
571 default=True
572 )
573 gain = pexConfig.Field(
574 dtype=float,
575 doc="The gain to use if no Detector is present in the Exposure (ignored if NaN)",
576 default=float("NaN"),
577 )
578 readNoise = pexConfig.Field(
579 dtype=float,
580 doc="The read noise to use if no Detector is present in the Exposure",
581 default=0.0,
582 )
583 doEmpiricalReadNoise = pexConfig.Field(
584 dtype=bool,
585 default=False,
586 doc="Calculate empirical read noise instead of value from AmpInfo data?"
587 )
588 usePtcReadNoise = pexConfig.Field(
589 dtype=bool,
590 default=False,
591 doc="Use readnoise values from the Photon Transfer Curve?"
592 )
593 maskNegativeVariance = pexConfig.Field(
594 dtype=bool,
595 default=True,
596 doc="Mask pixels that claim a negative variance? This likely indicates a failure "
597 "in the measurement of the overscan at an edge due to the data falling off faster "
598 "than the overscan model can account for it."
599 )
600 negativeVarianceMaskName = pexConfig.Field(
601 dtype=str,
602 default="BAD",
603 doc="Mask plane to use to mark pixels with negative variance, if `maskNegativeVariance` is True.",
604 )
605 # Linearization.
606 doLinearize = pexConfig.Field(
607 dtype=bool,
608 doc="Correct for nonlinearity of the detector's response?",
609 default=True,
610 )
612 # Crosstalk.
613 doCrosstalk = pexConfig.Field(
614 dtype=bool,
615 doc="Apply intra-CCD crosstalk correction?",
616 default=False,
617 )
618 doCrosstalkBeforeAssemble = pexConfig.Field(
619 dtype=bool,
620 doc="Apply crosstalk correction before CCD assembly, and before trimming?",
621 default=False,
622 )
623 crosstalk = pexConfig.ConfigurableField(
624 target=CrosstalkTask,
625 doc="Intra-CCD crosstalk correction",
626 )
628 # Masking options.
629 doDefect = pexConfig.Field(
630 dtype=bool,
631 doc="Apply correction for CCD defects, e.g. hot pixels?",
632 default=True,
633 )
634 doNanMasking = pexConfig.Field(
635 dtype=bool,
636 doc="Mask non-finite (NAN, inf) pixels?",
637 default=True,
638 )
639 doWidenSaturationTrails = pexConfig.Field(
640 dtype=bool,
641 doc="Widen bleed trails based on their width?",
642 default=True
643 )
645 # Brighter-Fatter correction.
646 doBrighterFatter = pexConfig.Field(
647 dtype=bool,
648 default=False,
649 doc="Apply the brighter-fatter correction?"
650 )
651 brighterFatterLevel = pexConfig.ChoiceField(
652 dtype=str,
653 default="DETECTOR",
654 doc="The level at which to correct for brighter-fatter.",
655 allowed={
656 "AMP": "Every amplifier treated separately.",
657 "DETECTOR": "One kernel per detector",
658 }
659 )
660 brighterFatterMaxIter = pexConfig.Field(
661 dtype=int,
662 default=10,
663 doc="Maximum number of iterations for the brighter-fatter correction"
664 )
665 brighterFatterThreshold = pexConfig.Field(
666 dtype=float,
667 default=1000,
668 doc="Threshold used to stop iterating the brighter-fatter correction. It is the "
669 "absolute value of the difference between the current corrected image and the one "
670 "from the previous iteration summed over all the pixels."
671 )
672 brighterFatterApplyGain = pexConfig.Field(
673 dtype=bool,
674 default=True,
675 doc="Should the gain be applied when applying the brighter-fatter correction?"
676 )
677 brighterFatterMaskListToInterpolate = pexConfig.ListField(
678 dtype=str,
679 doc="List of mask planes that should be interpolated over when applying the brighter-fatter "
680 "correction.",
681 default=["SAT", "BAD", "NO_DATA", "UNMASKEDNAN"],
682 )
683 brighterFatterMaskGrowSize = pexConfig.Field(
684 dtype=int,
685 default=0,
686 doc="Number of pixels to grow the masks listed in config.brighterFatterMaskListToInterpolate "
687 "when brighter-fatter correction is applied."
688 )
690 # Dark subtraction.
691 doDark = pexConfig.Field(
692 dtype=bool,
693 doc="Apply dark frame correction?",
694 default=True,
695 )
696 darkDataProductName = pexConfig.Field(
697 dtype=str,
698 doc="Name of the dark data product",
699 default="dark",
700 )
702 # Camera-specific stray light removal.
703 doStrayLight = pexConfig.Field(
704 dtype=bool,
705 doc="Subtract stray light in the y-band (due to encoder LEDs)?",
706 default=False,
707 )
708 strayLight = pexConfig.ConfigurableField(
709 target=StrayLightTask,
710 doc="y-band stray light correction"
711 )
713 # Flat correction.
714 doFlat = pexConfig.Field(
715 dtype=bool,
716 doc="Apply flat field correction?",
717 default=True,
718 )
719 flatDataProductName = pexConfig.Field(
720 dtype=str,
721 doc="Name of the flat data product",
722 default="flat",
723 )
724 flatScalingType = pexConfig.ChoiceField(
725 dtype=str,
726 doc="The method for scaling the flat on the fly.",
727 default='USER',
728 allowed={
729 "USER": "Scale by flatUserScale",
730 "MEAN": "Scale by the inverse of the mean",
731 "MEDIAN": "Scale by the inverse of the median",
732 },
733 )
734 flatUserScale = pexConfig.Field(
735 dtype=float,
736 doc="If flatScalingType is 'USER' then scale flat by this amount; ignored otherwise",
737 default=1.0,
738 )
739 doTweakFlat = pexConfig.Field(
740 dtype=bool,
741 doc="Tweak flats to match observed amplifier ratios?",
742 default=False
743 )
745 # Amplifier normalization based on gains instead of using flats
746 # configuration.
747 doApplyGains = pexConfig.Field(
748 dtype=bool,
749 doc="Correct the amplifiers for their gains instead of applying flat correction",
750 default=False,
751 )
752 usePtcGains = pexConfig.Field(
753 dtype=bool,
754 doc="Use the gain values from the Photon Transfer Curve?",
755 default=False,
756 )
757 normalizeGains = pexConfig.Field(
758 dtype=bool,
759 doc="Normalize all the amplifiers in each CCD to have the same median value.",
760 default=False,
761 )
763 # Fringe correction.
764 doFringe = pexConfig.Field(
765 dtype=bool,
766 doc="Apply fringe correction?",
767 default=True,
768 )
769 fringe = pexConfig.ConfigurableField(
770 target=FringeTask,
771 doc="Fringe subtraction task",
772 )
773 fringeAfterFlat = pexConfig.Field(
774 dtype=bool,
775 doc="Do fringe subtraction after flat-fielding?",
776 default=True,
777 )
779 # Amp offset correction.
780 doAmpOffset = pexConfig.Field(
781 doc="Calculate and apply amp offset corrections?",
782 dtype=bool,
783 default=False,
784 )
785 ampOffset = pexConfig.ConfigurableField(
786 doc="Amp offset correction task.",
787 target=AmpOffsetTask,
788 )
790 # Initial CCD-level background statistics options.
791 doMeasureBackground = pexConfig.Field(
792 dtype=bool,
793 doc="Measure the background level on the reduced image?",
794 default=False,
795 )
797 # Camera-specific masking configuration.
798 doCameraSpecificMasking = pexConfig.Field(
799 dtype=bool,
800 doc="Mask camera-specific bad regions?",
801 default=False,
802 )
803 masking = pexConfig.ConfigurableField(
804 target=MaskingTask,
805 doc="Masking task."
806 )
808 # Interpolation options.
809 doInterpolate = pexConfig.Field(
810 dtype=bool,
811 doc="Interpolate masked pixels?",
812 default=True,
813 )
814 doSaturationInterpolation = pexConfig.Field(
815 dtype=bool,
816 doc="Perform interpolation over pixels masked as saturated?"
817 " NB: This is independent of doSaturation; if that is False this plane"
818 " will likely be blank, resulting in a no-op here.",
819 default=True,
820 )
821 doNanInterpolation = pexConfig.Field(
822 dtype=bool,
823 doc="Perform interpolation over pixels masked as NaN?"
824 " NB: This is independent of doNanMasking; if that is False this plane"
825 " will likely be blank, resulting in a no-op here.",
826 default=True,
827 )
828 doNanInterpAfterFlat = pexConfig.Field(
829 dtype=bool,
830 doc=("If True, ensure we interpolate NaNs after flat-fielding, even if we "
831 "also have to interpolate them before flat-fielding."),
832 default=False,
833 )
834 maskListToInterpolate = pexConfig.ListField(
835 dtype=str,
836 doc="List of mask planes that should be interpolated.",
837 default=['SAT', 'BAD'],
838 )
839 doSaveInterpPixels = pexConfig.Field(
840 dtype=bool,
841 doc="Save a copy of the pre-interpolated pixel values?",
842 default=False,
843 )
845 # Default photometric calibration options.
846 fluxMag0T1 = pexConfig.DictField(
847 keytype=str,
848 itemtype=float,
849 doc="The approximate flux of a zero-magnitude object in a one-second exposure, per filter.",
850 default=dict((f, pow(10.0, 0.4*m)) for f, m in (("Unknown", 28.0),
851 ))
852 )
853 defaultFluxMag0T1 = pexConfig.Field(
854 dtype=float,
855 doc="Default value for fluxMag0T1 (for an unrecognized filter).",
856 default=pow(10.0, 0.4*28.0)
857 )
859 # Vignette correction configuration.
860 doVignette = pexConfig.Field(
861 dtype=bool,
862 doc="Apply vignetting parameters?",
863 default=False,
864 )
865 vignette = pexConfig.ConfigurableField(
866 target=VignetteTask,
867 doc="Vignetting task.",
868 )
870 # Transmission curve configuration.
871 doAttachTransmissionCurve = pexConfig.Field(
872 dtype=bool,
873 default=False,
874 doc="Construct and attach a wavelength-dependent throughput curve for this CCD image?"
875 )
876 doUseOpticsTransmission = pexConfig.Field(
877 dtype=bool,
878 default=True,
879 doc="Load and use transmission_optics (if doAttachTransmissionCurve is True)?"
880 )
881 doUseFilterTransmission = pexConfig.Field(
882 dtype=bool,
883 default=True,
884 doc="Load and use transmission_filter (if doAttachTransmissionCurve is True)?"
885 )
886 doUseSensorTransmission = pexConfig.Field(
887 dtype=bool,
888 default=True,
889 doc="Load and use transmission_sensor (if doAttachTransmissionCurve is True)?"
890 )
891 doUseAtmosphereTransmission = pexConfig.Field(
892 dtype=bool,
893 default=True,
894 doc="Load and use transmission_atmosphere (if doAttachTransmissionCurve is True)?"
895 )
897 # Illumination correction.
898 doIlluminationCorrection = pexConfig.Field(
899 dtype=bool,
900 default=False,
901 doc="Perform illumination correction?"
902 )
903 illuminationCorrectionDataProductName = pexConfig.Field(
904 dtype=str,
905 doc="Name of the illumination correction data product.",
906 default="illumcor",
907 )
908 illumScale = pexConfig.Field(
909 dtype=float,
910 doc="Scale factor for the illumination correction.",
911 default=1.0,
912 )
913 illumFilters = pexConfig.ListField(
914 dtype=str,
915 default=[],
916 doc="Only perform illumination correction for these filters."
917 )
919 # Write the outputs to disk. If ISR is run as a subtask, this may not
920 # be needed.
921 doWrite = pexConfig.Field(
922 dtype=bool,
923 doc="Persist postISRCCD?",
924 default=True,
925 )
927 def validate(self):
928 super().validate()
929 if self.doFlat and self.doApplyGains:
930 raise ValueError("You may not specify both doFlat and doApplyGains")
931 if self.doBiasBeforeOverscan and self.doTrimToMatchCalib:
932 raise ValueError("You may not specify both doBiasBeforeOverscan and doTrimToMatchCalib")
933 if self.doSaturationInterpolation and self.saturatedMaskName not in self.maskListToInterpolate:
934 self.maskListToInterpolate.append(self.saturatedMaskName)
935 if not self.doSaturationInterpolation and self.saturatedMaskName in self.maskListToInterpolate:
936 self.maskListToInterpolate.remove(self.saturatedMaskName)
937 if self.doNanInterpolation and "UNMASKEDNAN" not in self.maskListToInterpolate:
938 self.maskListToInterpolate.append("UNMASKEDNAN")
941class IsrTask(pipeBase.PipelineTask, pipeBase.CmdLineTask):
942 """Apply common instrument signature correction algorithms to a raw frame.
944 The process for correcting imaging data is very similar from
945 camera to camera. This task provides a vanilla implementation of
946 doing these corrections, including the ability to turn certain
947 corrections off if they are not needed. The inputs to the primary
948 method, `run()`, are a raw exposure to be corrected and the
949 calibration data products. The raw input is a single chip sized
950 mosaic of all amps including overscans and other non-science
951 pixels. The method `runDataRef()` identifies and defines the
952 calibration data products, and is intended for use by a
953 `lsst.pipe.base.cmdLineTask.CmdLineTask` and takes as input only a
954 `daf.persistence.butlerSubset.ButlerDataRef`. This task may be
955 subclassed for different camera, although the most camera specific
956 methods have been split into subtasks that can be redirected
957 appropriately.
959 The __init__ method sets up the subtasks for ISR processing, using
960 the defaults from `lsst.ip.isr`.
962 Parameters
963 ----------
964 args : `list`
965 Positional arguments passed to the Task constructor.
966 None used at this time.
967 kwargs : `dict`, optional
968 Keyword arguments passed on to the Task constructor.
969 None used at this time.
970 """
971 ConfigClass = IsrTaskConfig
972 _DefaultName = "isr"
974 def __init__(self, **kwargs):
975 super().__init__(**kwargs)
976 self.makeSubtask("assembleCcd")
977 self.makeSubtask("crosstalk")
978 self.makeSubtask("strayLight")
979 self.makeSubtask("fringe")
980 self.makeSubtask("masking")
981 self.makeSubtask("overscan")
982 self.makeSubtask("vignette")
983 self.makeSubtask("ampOffset")
985 def runQuantum(self, butlerQC, inputRefs, outputRefs):
986 inputs = butlerQC.get(inputRefs)
988 try:
989 inputs['detectorNum'] = inputRefs.ccdExposure.dataId['detector']
990 except Exception as e:
991 raise ValueError("Failure to find valid detectorNum value for Dataset %s: %s." %
992 (inputRefs, e))
994 inputs['isGen3'] = True
996 detector = inputs['ccdExposure'].getDetector()
998 if self.config.doCrosstalk is True:
999 # Crosstalk sources need to be defined by the pipeline
1000 # yaml if they exist.
1001 if 'crosstalk' in inputs and inputs['crosstalk'] is not None:
1002 if not isinstance(inputs['crosstalk'], CrosstalkCalib):
1003 inputs['crosstalk'] = CrosstalkCalib.fromTable(inputs['crosstalk'])
1004 else:
1005 coeffVector = (self.config.crosstalk.crosstalkValues
1006 if self.config.crosstalk.useConfigCoefficients else None)
1007 crosstalkCalib = CrosstalkCalib().fromDetector(detector, coeffVector=coeffVector)
1008 inputs['crosstalk'] = crosstalkCalib
1009 if inputs['crosstalk'].interChip and len(inputs['crosstalk'].interChip) > 0:
1010 if 'crosstalkSources' not in inputs:
1011 self.log.warning("No crosstalkSources found for chip with interChip terms!")
1013 if self.doLinearize(detector) is True:
1014 if 'linearizer' in inputs:
1015 if isinstance(inputs['linearizer'], dict):
1016 linearizer = linearize.Linearizer(detector=detector, log=self.log)
1017 linearizer.fromYaml(inputs['linearizer'])
1018 self.log.warning("Dictionary linearizers will be deprecated in DM-28741.")
1019 elif isinstance(inputs['linearizer'], numpy.ndarray):
1020 linearizer = linearize.Linearizer(table=inputs.get('linearizer', None),
1021 detector=detector,
1022 log=self.log)
1023 self.log.warning("Bare lookup table linearizers will be deprecated in DM-28741.")
1024 else:
1025 linearizer = inputs['linearizer']
1026 linearizer.log = self.log
1027 inputs['linearizer'] = linearizer
1028 else:
1029 inputs['linearizer'] = linearize.Linearizer(detector=detector, log=self.log)
1030 self.log.warning("Constructing linearizer from cameraGeom information.")
1032 if self.config.doDefect is True:
1033 if "defects" in inputs and inputs['defects'] is not None:
1034 # defects is loaded as a BaseCatalog with columns
1035 # x0, y0, width, height. Masking expects a list of defects
1036 # defined by their bounding box
1037 if not isinstance(inputs["defects"], Defects):
1038 inputs["defects"] = Defects.fromTable(inputs["defects"])
1040 # Load the correct style of brighter-fatter kernel, and repack
1041 # the information as a numpy array.
1042 if self.config.doBrighterFatter:
1043 brighterFatterKernel = inputs.pop('newBFKernel', None)
1044 if brighterFatterKernel is None:
1045 brighterFatterKernel = inputs.get('bfKernel', None)
1047 if brighterFatterKernel is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
1048 # This is a ISR calib kernel
1049 detName = detector.getName()
1050 level = brighterFatterKernel.level
1052 # This is expected to be a dictionary of amp-wise gains.
1053 inputs['bfGains'] = brighterFatterKernel.gain
1054 if self.config.brighterFatterLevel == 'DETECTOR':
1055 if level == 'DETECTOR':
1056 if detName in brighterFatterKernel.detKernels:
1057 inputs['bfKernel'] = brighterFatterKernel.detKernels[detName]
1058 else:
1059 raise RuntimeError("Failed to extract kernel from new-style BF kernel.")
1060 elif level == 'AMP':
1061 self.log.warning("Making DETECTOR level kernel from AMP based brighter "
1062 "fatter kernels.")
1063 brighterFatterKernel.makeDetectorKernelFromAmpwiseKernels(detName)
1064 inputs['bfKernel'] = brighterFatterKernel.detKernels[detName]
1065 elif self.config.brighterFatterLevel == 'AMP':
1066 raise NotImplementedError("Per-amplifier brighter-fatter correction not implemented")
1068 if self.config.doFringe is True and self.fringe.checkFilter(inputs['ccdExposure']):
1069 expId = inputs['ccdExposure'].info.id
1070 inputs['fringes'] = self.fringe.loadFringes(inputs['fringes'],
1071 expId=expId,
1072 assembler=self.assembleCcd
1073 if self.config.doAssembleIsrExposures else None)
1074 else:
1075 inputs['fringes'] = pipeBase.Struct(fringes=None)
1077 if self.config.doStrayLight is True and self.strayLight.checkFilter(inputs['ccdExposure']):
1078 if 'strayLightData' not in inputs:
1079 inputs['strayLightData'] = None
1081 outputs = self.run(**inputs)
1082 butlerQC.put(outputs, outputRefs)
1084 def readIsrData(self, dataRef, rawExposure):
1085 """Retrieve necessary frames for instrument signature removal.
1087 Pre-fetching all required ISR data products limits the IO
1088 required by the ISR. Any conflict between the calibration data
1089 available and that needed for ISR is also detected prior to
1090 doing processing, allowing it to fail quickly.
1092 Parameters
1093 ----------
1094 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
1095 Butler reference of the detector data to be processed
1096 rawExposure : `afw.image.Exposure`
1097 The raw exposure that will later be corrected with the
1098 retrieved calibration data; should not be modified in this
1099 method.
1101 Returns
1102 -------
1103 result : `lsst.pipe.base.Struct`
1104 Result struct with components (which may be `None`):
1105 - ``bias``: bias calibration frame (`afw.image.Exposure`)
1106 - ``linearizer``: functor for linearization
1107 (`ip.isr.linearize.LinearizeBase`)
1108 - ``crosstalkSources``: list of possible crosstalk sources (`list`)
1109 - ``dark``: dark calibration frame (`afw.image.Exposure`)
1110 - ``flat``: flat calibration frame (`afw.image.Exposure`)
1111 - ``bfKernel``: Brighter-Fatter kernel (`numpy.ndarray`)
1112 - ``defects``: list of defects (`lsst.ip.isr.Defects`)
1113 - ``fringes``: `lsst.pipe.base.Struct` with components:
1114 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
1115 - ``seed``: random seed derived from the ccdExposureId for random
1116 number generator (`uint32`).
1117 - ``opticsTransmission``: `lsst.afw.image.TransmissionCurve`
1118 A ``TransmissionCurve`` that represents the throughput of the
1119 optics, to be evaluated in focal-plane coordinates.
1120 - ``filterTransmission`` : `lsst.afw.image.TransmissionCurve`
1121 A ``TransmissionCurve`` that represents the throughput of the
1122 filter itself, to be evaluated in focal-plane coordinates.
1123 - ``sensorTransmission`` : `lsst.afw.image.TransmissionCurve`
1124 A ``TransmissionCurve`` that represents the throughput of the
1125 sensor itself, to be evaluated in post-assembly trimmed
1126 detector coordinates.
1127 - ``atmosphereTransmission`` : `lsst.afw.image.TransmissionCurve`
1128 A ``TransmissionCurve`` that represents the throughput of the
1129 atmosphere, assumed to be spatially constant.
1130 - ``strayLightData`` : `object`
1131 An opaque object containing calibration information for
1132 stray-light correction. If `None`, no correction will be
1133 performed.
1134 - ``illumMaskedImage`` : illumination correction image
1135 (`lsst.afw.image.MaskedImage`)
1137 Raises
1138 ------
1139 NotImplementedError :
1140 Raised if a per-amplifier brighter-fatter kernel is requested by
1141 the configuration.
1142 """
1143 try:
1144 dateObs = rawExposure.getInfo().getVisitInfo().getDate()
1145 dateObs = dateObs.toPython().isoformat()
1146 except RuntimeError:
1147 self.log.warning("Unable to identify dateObs for rawExposure.")
1148 dateObs = None
1150 ccd = rawExposure.getDetector()
1151 filterLabel = rawExposure.getFilterLabel()
1152 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
1153 rawExposure.mask.addMaskPlane("UNMASKEDNAN") # needed to match pre DM-15862 processing.
1154 biasExposure = (self.getIsrExposure(dataRef, self.config.biasDataProductName)
1155 if self.config.doBias else None)
1156 # immediate=True required for functors and linearizers are functors
1157 # see ticket DM-6515
1158 linearizer = (dataRef.get("linearizer", immediate=True)
1159 if self.doLinearize(ccd) else None)
1160 if linearizer is not None and not isinstance(linearizer, numpy.ndarray):
1161 linearizer.log = self.log
1162 if isinstance(linearizer, numpy.ndarray):
1163 linearizer = linearize.Linearizer(table=linearizer, detector=ccd)
1165 crosstalkCalib = None
1166 if self.config.doCrosstalk:
1167 try:
1168 crosstalkCalib = dataRef.get("crosstalk", immediate=True)
1169 except NoResults:
1170 coeffVector = (self.config.crosstalk.crosstalkValues
1171 if self.config.crosstalk.useConfigCoefficients else None)
1172 crosstalkCalib = CrosstalkCalib().fromDetector(ccd, coeffVector=coeffVector)
1173 crosstalkSources = (self.crosstalk.prepCrosstalk(dataRef, crosstalkCalib)
1174 if self.config.doCrosstalk else None)
1176 darkExposure = (self.getIsrExposure(dataRef, self.config.darkDataProductName)
1177 if self.config.doDark else None)
1178 flatExposure = (self.getIsrExposure(dataRef, self.config.flatDataProductName,
1179 dateObs=dateObs)
1180 if self.config.doFlat else None)
1182 brighterFatterKernel = None
1183 brighterFatterGains = None
1184 if self.config.doBrighterFatter is True:
1185 try:
1186 # Use the new-style cp_pipe version of the kernel if it exists
1187 # If using a new-style kernel, always use the self-consistent
1188 # gains, i.e. the ones inside the kernel object itself
1189 brighterFatterKernel = dataRef.get("brighterFatterKernel")
1190 brighterFatterGains = brighterFatterKernel.gain
1191 self.log.info("New style brighter-fatter kernel (brighterFatterKernel) loaded")
1192 except NoResults:
1193 try: # Fall back to the old-style numpy-ndarray style kernel if necessary.
1194 brighterFatterKernel = dataRef.get("bfKernel")
1195 self.log.info("Old style brighter-fatter kernel (bfKernel) loaded")
1196 except NoResults:
1197 brighterFatterKernel = None
1198 if brighterFatterKernel is not None and not isinstance(brighterFatterKernel, numpy.ndarray):
1199 # If the kernel is not an ndarray, it's the cp_pipe version
1200 # so extract the kernel for this detector, or raise an error
1201 if self.config.brighterFatterLevel == 'DETECTOR':
1202 if brighterFatterKernel.detKernels:
1203 brighterFatterKernel = brighterFatterKernel.detKernels[ccd.getName()]
1204 else:
1205 raise RuntimeError("Failed to extract kernel from new-style BF kernel.")
1206 else:
1207 # TODO DM-15631 for implementing this
1208 raise NotImplementedError("Per-amplifier brighter-fatter correction not implemented")
1210 defectList = (dataRef.get("defects")
1211 if self.config.doDefect else None)
1212 expId = rawExposure.info.id
1213 fringeStruct = (self.fringe.readFringes(dataRef, expId=expId, assembler=self.assembleCcd
1214 if self.config.doAssembleIsrExposures else None)
1215 if self.config.doFringe and self.fringe.checkFilter(rawExposure)
1216 else pipeBase.Struct(fringes=None))
1218 if self.config.doAttachTransmissionCurve:
1219 opticsTransmission = (dataRef.get("transmission_optics")
1220 if self.config.doUseOpticsTransmission else None)
1221 filterTransmission = (dataRef.get("transmission_filter")
1222 if self.config.doUseFilterTransmission else None)
1223 sensorTransmission = (dataRef.get("transmission_sensor")
1224 if self.config.doUseSensorTransmission else None)
1225 atmosphereTransmission = (dataRef.get("transmission_atmosphere")
1226 if self.config.doUseAtmosphereTransmission else None)
1227 else:
1228 opticsTransmission = None
1229 filterTransmission = None
1230 sensorTransmission = None
1231 atmosphereTransmission = None
1233 if self.config.doStrayLight:
1234 strayLightData = self.strayLight.readIsrData(dataRef, rawExposure)
1235 else:
1236 strayLightData = None
1238 illumMaskedImage = (self.getIsrExposure(dataRef,
1239 self.config.illuminationCorrectionDataProductName).getMaskedImage()
1240 if (self.config.doIlluminationCorrection
1241 and physicalFilter in self.config.illumFilters)
1242 else None)
1244 # Struct should include only kwargs to run()
1245 return pipeBase.Struct(bias=biasExposure,
1246 linearizer=linearizer,
1247 crosstalk=crosstalkCalib,
1248 crosstalkSources=crosstalkSources,
1249 dark=darkExposure,
1250 flat=flatExposure,
1251 bfKernel=brighterFatterKernel,
1252 bfGains=brighterFatterGains,
1253 defects=defectList,
1254 fringes=fringeStruct,
1255 opticsTransmission=opticsTransmission,
1256 filterTransmission=filterTransmission,
1257 sensorTransmission=sensorTransmission,
1258 atmosphereTransmission=atmosphereTransmission,
1259 strayLightData=strayLightData,
1260 illumMaskedImage=illumMaskedImage
1261 )
1263 @timeMethod
1264 def run(self, ccdExposure, *, camera=None, bias=None, linearizer=None,
1265 crosstalk=None, crosstalkSources=None,
1266 dark=None, flat=None, ptc=None, bfKernel=None, bfGains=None, defects=None,
1267 fringes=pipeBase.Struct(fringes=None), opticsTransmission=None, filterTransmission=None,
1268 sensorTransmission=None, atmosphereTransmission=None,
1269 detectorNum=None, strayLightData=None, illumMaskedImage=None,
1270 isGen3=False,
1271 ):
1272 """Perform instrument signature removal on an exposure.
1274 Steps included in the ISR processing, in order performed, are:
1275 - saturation and suspect pixel masking
1276 - overscan subtraction
1277 - CCD assembly of individual amplifiers
1278 - bias subtraction
1279 - variance image construction
1280 - linearization of non-linear response
1281 - crosstalk masking
1282 - brighter-fatter correction
1283 - dark subtraction
1284 - fringe correction
1285 - stray light subtraction
1286 - flat correction
1287 - masking of known defects and camera specific features
1288 - vignette calculation
1289 - appending transmission curve and distortion model
1291 Parameters
1292 ----------
1293 ccdExposure : `lsst.afw.image.Exposure`
1294 The raw exposure that is to be run through ISR. The
1295 exposure is modified by this method.
1296 camera : `lsst.afw.cameraGeom.Camera`, optional
1297 The camera geometry for this exposure. Required if
1298 one or more of ``ccdExposure``, ``bias``, ``dark``, or
1299 ``flat`` does not have an associated detector.
1300 bias : `lsst.afw.image.Exposure`, optional
1301 Bias calibration frame.
1302 linearizer : `lsst.ip.isr.linearize.LinearizeBase`, optional
1303 Functor for linearization.
1304 crosstalk : `lsst.ip.isr.crosstalk.CrosstalkCalib`, optional
1305 Calibration for crosstalk.
1306 crosstalkSources : `list`, optional
1307 List of possible crosstalk sources.
1308 dark : `lsst.afw.image.Exposure`, optional
1309 Dark calibration frame.
1310 flat : `lsst.afw.image.Exposure`, optional
1311 Flat calibration frame.
1312 ptc : `lsst.ip.isr.PhotonTransferCurveDataset`, optional
1313 Photon transfer curve dataset, with, e.g., gains
1314 and read noise.
1315 bfKernel : `numpy.ndarray`, optional
1316 Brighter-fatter kernel.
1317 bfGains : `dict` of `float`, optional
1318 Gains used to override the detector's nominal gains for the
1319 brighter-fatter correction. A dict keyed by amplifier name for
1320 the detector in question.
1321 defects : `lsst.ip.isr.Defects`, optional
1322 List of defects.
1323 fringes : `lsst.pipe.base.Struct`, optional
1324 Struct containing the fringe correction data, with
1325 elements:
1326 - ``fringes``: fringe calibration frame (`afw.image.Exposure`)
1327 - ``seed``: random seed derived from the ccdExposureId for random
1328 number generator (`uint32`)
1329 opticsTransmission: `lsst.afw.image.TransmissionCurve`, optional
1330 A ``TransmissionCurve`` that represents the throughput of the,
1331 optics, to be evaluated in focal-plane coordinates.
1332 filterTransmission : `lsst.afw.image.TransmissionCurve`
1333 A ``TransmissionCurve`` that represents the throughput of the
1334 filter itself, to be evaluated in focal-plane coordinates.
1335 sensorTransmission : `lsst.afw.image.TransmissionCurve`
1336 A ``TransmissionCurve`` that represents the throughput of the
1337 sensor itself, to be evaluated in post-assembly trimmed detector
1338 coordinates.
1339 atmosphereTransmission : `lsst.afw.image.TransmissionCurve`
1340 A ``TransmissionCurve`` that represents the throughput of the
1341 atmosphere, assumed to be spatially constant.
1342 detectorNum : `int`, optional
1343 The integer number for the detector to process.
1344 isGen3 : bool, optional
1345 Flag this call to run() as using the Gen3 butler environment.
1346 strayLightData : `object`, optional
1347 Opaque object containing calibration information for stray-light
1348 correction. If `None`, no correction will be performed.
1349 illumMaskedImage : `lsst.afw.image.MaskedImage`, optional
1350 Illumination correction image.
1352 Returns
1353 -------
1354 result : `lsst.pipe.base.Struct`
1355 Result struct with component:
1356 - ``exposure`` : `afw.image.Exposure`
1357 The fully ISR corrected exposure.
1358 - ``outputExposure`` : `afw.image.Exposure`
1359 An alias for `exposure`
1360 - ``ossThumb`` : `numpy.ndarray`
1361 Thumbnail image of the exposure after overscan subtraction.
1362 - ``flattenedThumb`` : `numpy.ndarray`
1363 Thumbnail image of the exposure after flat-field correction.
1365 Raises
1366 ------
1367 RuntimeError
1368 Raised if a configuration option is set to True, but the
1369 required calibration data has not been specified.
1371 Notes
1372 -----
1373 The current processed exposure can be viewed by setting the
1374 appropriate lsstDebug entries in the `debug.display`
1375 dictionary. The names of these entries correspond to some of
1376 the IsrTaskConfig Boolean options, with the value denoting the
1377 frame to use. The exposure is shown inside the matching
1378 option check and after the processing of that step has
1379 finished. The steps with debug points are:
1381 doAssembleCcd
1382 doBias
1383 doCrosstalk
1384 doBrighterFatter
1385 doDark
1386 doFringe
1387 doStrayLight
1388 doFlat
1390 In addition, setting the "postISRCCD" entry displays the
1391 exposure after all ISR processing has finished.
1393 """
1395 if isGen3 is True:
1396 # Gen3 currently cannot automatically do configuration overrides.
1397 # DM-15257 looks to discuss this issue.
1398 # Configure input exposures;
1400 ccdExposure = self.ensureExposure(ccdExposure, camera, detectorNum)
1401 bias = self.ensureExposure(bias, camera, detectorNum)
1402 dark = self.ensureExposure(dark, camera, detectorNum)
1403 flat = self.ensureExposure(flat, camera, detectorNum)
1404 else:
1405 if isinstance(ccdExposure, ButlerDataRef):
1406 return self.runDataRef(ccdExposure)
1408 ccd = ccdExposure.getDetector()
1409 filterLabel = ccdExposure.getFilterLabel()
1410 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
1412 if not ccd:
1413 assert not self.config.doAssembleCcd, "You need a Detector to run assembleCcd."
1414 ccd = [FakeAmp(ccdExposure, self.config)]
1416 # Validate Input
1417 if self.config.doBias and bias is None:
1418 raise RuntimeError("Must supply a bias exposure if config.doBias=True.")
1419 if self.doLinearize(ccd) and linearizer is None:
1420 raise RuntimeError("Must supply a linearizer if config.doLinearize=True for this detector.")
1421 if self.config.doBrighterFatter and bfKernel is None:
1422 raise RuntimeError("Must supply a kernel if config.doBrighterFatter=True.")
1423 if self.config.doDark and dark is None:
1424 raise RuntimeError("Must supply a dark exposure if config.doDark=True.")
1425 if self.config.doFlat and flat is None:
1426 raise RuntimeError("Must supply a flat exposure if config.doFlat=True.")
1427 if self.config.doDefect and defects is None:
1428 raise RuntimeError("Must supply defects if config.doDefect=True.")
1429 if (self.config.doFringe and physicalFilter in self.fringe.config.filters
1430 and fringes.fringes is None):
1431 # The `fringes` object needs to be a pipeBase.Struct, as
1432 # we use it as a `dict` for the parameters of
1433 # `FringeTask.run()`. The `fringes.fringes` `list` may
1434 # not be `None` if `doFringe=True`. Otherwise, raise.
1435 raise RuntimeError("Must supply fringe exposure as a pipeBase.Struct.")
1436 if (self.config.doIlluminationCorrection and physicalFilter in self.config.illumFilters
1437 and illumMaskedImage is None):
1438 raise RuntimeError("Must supply an illumcor if config.doIlluminationCorrection=True.")
1440 # Begin ISR processing.
1441 if self.config.doConvertIntToFloat:
1442 self.log.info("Converting exposure to floating point values.")
1443 ccdExposure = self.convertIntToFloat(ccdExposure)
1445 if self.config.doBias and self.config.doBiasBeforeOverscan:
1446 self.log.info("Applying bias correction.")
1447 isrFunctions.biasCorrection(ccdExposure.getMaskedImage(), bias.getMaskedImage(),
1448 trimToFit=self.config.doTrimToMatchCalib)
1449 self.debugView(ccdExposure, "doBias")
1451 # Amplifier level processing.
1452 overscans = []
1453 for amp in ccd:
1454 # if ccdExposure is one amp,
1455 # check for coverage to prevent performing ops multiple times
1456 if ccdExposure.getBBox().contains(amp.getBBox()):
1457 # Check for fully masked bad amplifiers,
1458 # and generate masks for SUSPECT and SATURATED values.
1459 badAmp = self.maskAmplifier(ccdExposure, amp, defects)
1461 if self.config.doOverscan and not badAmp:
1462 # Overscan correction on amp-by-amp basis.
1463 overscanResults = self.overscanCorrection(ccdExposure, amp)
1464 self.log.debug("Corrected overscan for amplifier %s.", amp.getName())
1465 if overscanResults is not None and \
1466 self.config.qa is not None and self.config.qa.saveStats is True:
1467 if isinstance(overscanResults.overscanFit, float):
1468 qaMedian = overscanResults.overscanFit
1469 qaStdev = float("NaN")
1470 else:
1471 qaStats = afwMath.makeStatistics(overscanResults.overscanFit,
1472 afwMath.MEDIAN | afwMath.STDEVCLIP)
1473 qaMedian = qaStats.getValue(afwMath.MEDIAN)
1474 qaStdev = qaStats.getValue(afwMath.STDEVCLIP)
1476 self.metadata[f"FIT MEDIAN {amp.getName()}"] = qaMedian
1477 self.metadata[f"FIT STDEV {amp.getName()}"] = qaStdev
1478 self.log.debug(" Overscan stats for amplifer %s: %f +/- %f",
1479 amp.getName(), qaMedian, qaStdev)
1481 # Residuals after overscan correction
1482 qaStatsAfter = afwMath.makeStatistics(overscanResults.overscanImage,
1483 afwMath.MEDIAN | afwMath.STDEVCLIP)
1484 qaMedianAfter = qaStatsAfter.getValue(afwMath.MEDIAN)
1485 qaStdevAfter = qaStatsAfter.getValue(afwMath.STDEVCLIP)
1487 self.metadata[f"RESIDUAL MEDIAN {amp.getName()}"] = qaMedianAfter
1488 self.metadata[f"RESIDUAL STDEV {amp.getName()}"] = qaStdevAfter
1489 self.log.debug(" Overscan stats for amplifer %s after correction: %f +/- %f",
1490 amp.getName(), qaMedianAfter, qaStdevAfter)
1492 ccdExposure.getMetadata().set('OVERSCAN', "Overscan corrected")
1493 else:
1494 if badAmp:
1495 self.log.warning("Amplifier %s is bad.", amp.getName())
1496 overscanResults = None
1498 overscans.append(overscanResults if overscanResults is not None else None)
1499 else:
1500 self.log.info("Skipped OSCAN for %s.", amp.getName())
1502 if self.config.doCrosstalk and self.config.doCrosstalkBeforeAssemble:
1503 self.log.info("Applying crosstalk correction.")
1504 self.crosstalk.run(ccdExposure, crosstalk=crosstalk,
1505 crosstalkSources=crosstalkSources, camera=camera)
1506 self.debugView(ccdExposure, "doCrosstalk")
1508 if self.config.doAssembleCcd:
1509 self.log.info("Assembling CCD from amplifiers.")
1510 ccdExposure = self.assembleCcd.assembleCcd(ccdExposure)
1512 if self.config.expectWcs and not ccdExposure.getWcs():
1513 self.log.warning("No WCS found in input exposure.")
1514 self.debugView(ccdExposure, "doAssembleCcd")
1516 ossThumb = None
1517 if self.config.qa.doThumbnailOss:
1518 ossThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1520 if self.config.doBias and not self.config.doBiasBeforeOverscan:
1521 self.log.info("Applying bias correction.")
1522 isrFunctions.biasCorrection(ccdExposure.getMaskedImage(), bias.getMaskedImage(),
1523 trimToFit=self.config.doTrimToMatchCalib)
1524 self.debugView(ccdExposure, "doBias")
1526 if self.config.doVariance:
1527 for amp, overscanResults in zip(ccd, overscans):
1528 if ccdExposure.getBBox().contains(amp.getBBox()):
1529 self.log.debug("Constructing variance map for amplifer %s.", amp.getName())
1530 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1531 if overscanResults is not None:
1532 self.updateVariance(ampExposure, amp,
1533 overscanImage=overscanResults.overscanImage,
1534 ptcDataset=ptc)
1535 else:
1536 self.updateVariance(ampExposure, amp,
1537 overscanImage=None,
1538 ptcDataset=ptc)
1539 if self.config.qa is not None and self.config.qa.saveStats is True:
1540 qaStats = afwMath.makeStatistics(ampExposure.getVariance(),
1541 afwMath.MEDIAN | afwMath.STDEVCLIP)
1542 self.metadata[f"ISR VARIANCE {amp.getName()} MEDIAN"] = \
1543 qaStats.getValue(afwMath.MEDIAN)
1544 self.metadata[f"ISR VARIANCE {amp.getName()} STDEV"] = \
1545 qaStats.getValue(afwMath.STDEVCLIP)
1546 self.log.debug(" Variance stats for amplifer %s: %f +/- %f.",
1547 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1548 qaStats.getValue(afwMath.STDEVCLIP))
1549 if self.config.maskNegativeVariance:
1550 self.maskNegativeVariance(ccdExposure)
1552 if self.doLinearize(ccd):
1553 self.log.info("Applying linearizer.")
1554 linearizer.applyLinearity(image=ccdExposure.getMaskedImage().getImage(),
1555 detector=ccd, log=self.log)
1557 if self.config.doCrosstalk and not self.config.doCrosstalkBeforeAssemble:
1558 self.log.info("Applying crosstalk correction.")
1559 self.crosstalk.run(ccdExposure, crosstalk=crosstalk,
1560 crosstalkSources=crosstalkSources, isTrimmed=True)
1561 self.debugView(ccdExposure, "doCrosstalk")
1563 # Masking block. Optionally mask known defects, NAN/inf pixels,
1564 # widen trails, and do anything else the camera needs. Saturated and
1565 # suspect pixels have already been masked.
1566 if self.config.doDefect:
1567 self.log.info("Masking defects.")
1568 self.maskDefect(ccdExposure, defects)
1570 if self.config.numEdgeSuspect > 0:
1571 self.log.info("Masking edges as SUSPECT.")
1572 self.maskEdges(ccdExposure, numEdgePixels=self.config.numEdgeSuspect,
1573 maskPlane="SUSPECT", level=self.config.edgeMaskLevel)
1575 if self.config.doNanMasking:
1576 self.log.info("Masking non-finite (NAN, inf) value pixels.")
1577 self.maskNan(ccdExposure)
1579 if self.config.doWidenSaturationTrails:
1580 self.log.info("Widening saturation trails.")
1581 isrFunctions.widenSaturationTrails(ccdExposure.getMaskedImage().getMask())
1583 if self.config.doCameraSpecificMasking:
1584 self.log.info("Masking regions for camera specific reasons.")
1585 self.masking.run(ccdExposure)
1587 if self.config.doBrighterFatter:
1588 # We need to apply flats and darks before we can interpolate, and
1589 # we need to interpolate before we do B-F, but we do B-F without
1590 # the flats and darks applied so we can work in units of electrons
1591 # or holes. This context manager applies and then removes the darks
1592 # and flats.
1593 #
1594 # We also do not want to interpolate values here, so operate on
1595 # temporary images so we can apply only the BF-correction and roll
1596 # back the interpolation.
1597 interpExp = ccdExposure.clone()
1598 with self.flatContext(interpExp, flat, dark):
1599 isrFunctions.interpolateFromMask(
1600 maskedImage=interpExp.getMaskedImage(),
1601 fwhm=self.config.fwhm,
1602 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1603 maskNameList=list(self.config.brighterFatterMaskListToInterpolate)
1604 )
1605 bfExp = interpExp.clone()
1607 self.log.info("Applying brighter-fatter correction using kernel type %s / gains %s.",
1608 type(bfKernel), type(bfGains))
1609 bfResults = isrFunctions.brighterFatterCorrection(bfExp, bfKernel,
1610 self.config.brighterFatterMaxIter,
1611 self.config.brighterFatterThreshold,
1612 self.config.brighterFatterApplyGain,
1613 bfGains)
1614 if bfResults[1] == self.config.brighterFatterMaxIter:
1615 self.log.warning("Brighter-fatter correction did not converge, final difference %f.",
1616 bfResults[0])
1617 else:
1618 self.log.info("Finished brighter-fatter correction in %d iterations.",
1619 bfResults[1])
1620 image = ccdExposure.getMaskedImage().getImage()
1621 bfCorr = bfExp.getMaskedImage().getImage()
1622 bfCorr -= interpExp.getMaskedImage().getImage()
1623 image += bfCorr
1625 # Applying the brighter-fatter correction applies a
1626 # convolution to the science image. At the edges this
1627 # convolution may not have sufficient valid pixels to
1628 # produce a valid correction. Mark pixels within the size
1629 # of the brighter-fatter kernel as EDGE to warn of this
1630 # fact.
1631 self.log.info("Ensuring image edges are masked as EDGE to the brighter-fatter kernel size.")
1632 self.maskEdges(ccdExposure, numEdgePixels=numpy.max(bfKernel.shape) // 2,
1633 maskPlane="EDGE")
1635 if self.config.brighterFatterMaskGrowSize > 0:
1636 self.log.info("Growing masks to account for brighter-fatter kernel convolution.")
1637 for maskPlane in self.config.brighterFatterMaskListToInterpolate:
1638 isrFunctions.growMasks(ccdExposure.getMask(),
1639 radius=self.config.brighterFatterMaskGrowSize,
1640 maskNameList=maskPlane,
1641 maskValue=maskPlane)
1643 self.debugView(ccdExposure, "doBrighterFatter")
1645 if self.config.doDark:
1646 self.log.info("Applying dark correction.")
1647 self.darkCorrection(ccdExposure, dark)
1648 self.debugView(ccdExposure, "doDark")
1650 if self.config.doFringe and not self.config.fringeAfterFlat:
1651 self.log.info("Applying fringe correction before flat.")
1652 self.fringe.run(ccdExposure, **fringes.getDict())
1653 self.debugView(ccdExposure, "doFringe")
1655 if self.config.doStrayLight and self.strayLight.check(ccdExposure):
1656 self.log.info("Checking strayLight correction.")
1657 self.strayLight.run(ccdExposure, strayLightData)
1658 self.debugView(ccdExposure, "doStrayLight")
1660 if self.config.doFlat:
1661 self.log.info("Applying flat correction.")
1662 self.flatCorrection(ccdExposure, flat)
1663 self.debugView(ccdExposure, "doFlat")
1665 if self.config.doApplyGains:
1666 self.log.info("Applying gain correction instead of flat.")
1667 if self.config.usePtcGains:
1668 self.log.info("Using gains from the Photon Transfer Curve.")
1669 isrFunctions.applyGains(ccdExposure, self.config.normalizeGains,
1670 ptcGains=ptc.gain)
1671 else:
1672 isrFunctions.applyGains(ccdExposure, self.config.normalizeGains)
1674 if self.config.doFringe and self.config.fringeAfterFlat:
1675 self.log.info("Applying fringe correction after flat.")
1676 self.fringe.run(ccdExposure, **fringes.getDict())
1678 if self.config.doVignette:
1679 self.log.info("Constructing Vignette polygon.")
1680 self.vignettePolygon = self.vignette.run(ccdExposure)
1682 if self.config.vignette.doWriteVignettePolygon:
1683 self.setValidPolygonIntersect(ccdExposure, self.vignettePolygon)
1685 if self.config.doAttachTransmissionCurve:
1686 self.log.info("Adding transmission curves.")
1687 isrFunctions.attachTransmissionCurve(ccdExposure, opticsTransmission=opticsTransmission,
1688 filterTransmission=filterTransmission,
1689 sensorTransmission=sensorTransmission,
1690 atmosphereTransmission=atmosphereTransmission)
1692 flattenedThumb = None
1693 if self.config.qa.doThumbnailFlattened:
1694 flattenedThumb = isrQa.makeThumbnail(ccdExposure, isrQaConfig=self.config.qa)
1696 if self.config.doIlluminationCorrection and physicalFilter in self.config.illumFilters:
1697 self.log.info("Performing illumination correction.")
1698 isrFunctions.illuminationCorrection(ccdExposure.getMaskedImage(),
1699 illumMaskedImage, illumScale=self.config.illumScale,
1700 trimToFit=self.config.doTrimToMatchCalib)
1702 preInterpExp = None
1703 if self.config.doSaveInterpPixels:
1704 preInterpExp = ccdExposure.clone()
1706 # Reset and interpolate bad pixels.
1707 #
1708 # Large contiguous bad regions (which should have the BAD mask
1709 # bit set) should have their values set to the image median.
1710 # This group should include defects and bad amplifiers. As the
1711 # area covered by these defects are large, there's little
1712 # reason to expect that interpolation would provide a more
1713 # useful value.
1714 #
1715 # Smaller defects can be safely interpolated after the larger
1716 # regions have had their pixel values reset. This ensures
1717 # that the remaining defects adjacent to bad amplifiers (as an
1718 # example) do not attempt to interpolate extreme values.
1719 if self.config.doSetBadRegions:
1720 badPixelCount, badPixelValue = isrFunctions.setBadRegions(ccdExposure)
1721 if badPixelCount > 0:
1722 self.log.info("Set %d BAD pixels to %f.", badPixelCount, badPixelValue)
1724 if self.config.doInterpolate:
1725 self.log.info("Interpolating masked pixels.")
1726 isrFunctions.interpolateFromMask(
1727 maskedImage=ccdExposure.getMaskedImage(),
1728 fwhm=self.config.fwhm,
1729 growSaturatedFootprints=self.config.growSaturationFootprintSize,
1730 maskNameList=list(self.config.maskListToInterpolate)
1731 )
1733 self.roughZeroPoint(ccdExposure)
1735 # correct for amp offsets within the CCD
1736 if self.config.doAmpOffset:
1737 self.log.info("Correcting amp offsets.")
1738 self.ampOffset.run(ccdExposure)
1740 if self.config.doMeasureBackground:
1741 self.log.info("Measuring background level.")
1742 self.measureBackground(ccdExposure, self.config.qa)
1744 if self.config.qa is not None and self.config.qa.saveStats is True:
1745 for amp in ccd:
1746 ampExposure = ccdExposure.Factory(ccdExposure, amp.getBBox())
1747 qaStats = afwMath.makeStatistics(ampExposure.getImage(),
1748 afwMath.MEDIAN | afwMath.STDEVCLIP)
1749 self.metadata[f"ISR BACKGROUND {amp.getName()} MEDIAN"] = qaStats.getValue(afwMath.MEDIAN)
1750 self.metadata[f"ISR BACKGROUND {amp.getName()} STDEV"] = \
1751 qaStats.getValue(afwMath.STDEVCLIP)
1752 self.log.debug(" Background stats for amplifer %s: %f +/- %f",
1753 amp.getName(), qaStats.getValue(afwMath.MEDIAN),
1754 qaStats.getValue(afwMath.STDEVCLIP))
1756 self.debugView(ccdExposure, "postISRCCD")
1758 return pipeBase.Struct(
1759 exposure=ccdExposure,
1760 ossThumb=ossThumb,
1761 flattenedThumb=flattenedThumb,
1763 preInterpExposure=preInterpExp,
1764 outputExposure=ccdExposure,
1765 outputOssThumbnail=ossThumb,
1766 outputFlattenedThumbnail=flattenedThumb,
1767 )
1769 @timeMethod
1770 def runDataRef(self, sensorRef):
1771 """Perform instrument signature removal on a ButlerDataRef of a Sensor.
1773 This method contains the `CmdLineTask` interface to the ISR
1774 processing. All IO is handled here, freeing the `run()` method
1775 to manage only pixel-level calculations. The steps performed
1776 are:
1777 - Read in necessary detrending/isr/calibration data.
1778 - Process raw exposure in `run()`.
1779 - Persist the ISR-corrected exposure as "postISRCCD" if
1780 config.doWrite=True.
1782 Parameters
1783 ----------
1784 sensorRef : `daf.persistence.butlerSubset.ButlerDataRef`
1785 DataRef of the detector data to be processed
1787 Returns
1788 -------
1789 result : `lsst.pipe.base.Struct`
1790 Result struct with component:
1791 - ``exposure`` : `afw.image.Exposure`
1792 The fully ISR corrected exposure.
1794 Raises
1795 ------
1796 RuntimeError
1797 Raised if a configuration option is set to True, but the
1798 required calibration data does not exist.
1800 """
1801 self.log.info("Performing ISR on sensor %s.", sensorRef.dataId)
1803 ccdExposure = sensorRef.get(self.config.datasetType)
1805 camera = sensorRef.get("camera")
1806 isrData = self.readIsrData(sensorRef, ccdExposure)
1808 result = self.run(ccdExposure, camera=camera, **isrData.getDict())
1810 if self.config.doWrite:
1811 sensorRef.put(result.exposure, "postISRCCD")
1812 if result.preInterpExposure is not None:
1813 sensorRef.put(result.preInterpExposure, "postISRCCD_uninterpolated")
1814 if result.ossThumb is not None:
1815 isrQa.writeThumbnail(sensorRef, result.ossThumb, "ossThumb")
1816 if result.flattenedThumb is not None:
1817 isrQa.writeThumbnail(sensorRef, result.flattenedThumb, "flattenedThumb")
1819 return result
1821 def getIsrExposure(self, dataRef, datasetType, dateObs=None, immediate=True):
1822 """Retrieve a calibration dataset for removing instrument signature.
1824 Parameters
1825 ----------
1827 dataRef : `daf.persistence.butlerSubset.ButlerDataRef`
1828 DataRef of the detector data to find calibration datasets
1829 for.
1830 datasetType : `str`
1831 Type of dataset to retrieve (e.g. 'bias', 'flat', etc).
1832 dateObs : `str`, optional
1833 Date of the observation. Used to correct butler failures
1834 when using fallback filters.
1835 immediate : `Bool`
1836 If True, disable butler proxies to enable error handling
1837 within this routine.
1839 Returns
1840 -------
1841 exposure : `lsst.afw.image.Exposure`
1842 Requested calibration frame.
1844 Raises
1845 ------
1846 RuntimeError
1847 Raised if no matching calibration frame can be found.
1848 """
1849 try:
1850 exp = dataRef.get(datasetType, immediate=immediate)
1851 except Exception as exc1:
1852 if not self.config.fallbackFilterName:
1853 raise RuntimeError("Unable to retrieve %s for %s: %s." % (datasetType, dataRef.dataId, exc1))
1854 try:
1855 if self.config.useFallbackDate and dateObs:
1856 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName,
1857 dateObs=dateObs, immediate=immediate)
1858 else:
1859 exp = dataRef.get(datasetType, filter=self.config.fallbackFilterName, immediate=immediate)
1860 except Exception as exc2:
1861 raise RuntimeError("Unable to retrieve %s for %s, even with fallback filter %s: %s AND %s." %
1862 (datasetType, dataRef.dataId, self.config.fallbackFilterName, exc1, exc2))
1863 self.log.warning("Using fallback calibration from filter %s.", self.config.fallbackFilterName)
1865 if self.config.doAssembleIsrExposures:
1866 exp = self.assembleCcd.assembleCcd(exp)
1867 return exp
1869 def ensureExposure(self, inputExp, camera=None, detectorNum=None):
1870 """Ensure that the data returned by Butler is a fully constructed exp.
1872 ISR requires exposure-level image data for historical reasons, so if we
1873 did not recieve that from Butler, construct it from what we have,
1874 modifying the input in place.
1876 Parameters
1877 ----------
1878 inputExp : `lsst.afw.image.Exposure`, `lsst.afw.image.DecoratedImageU`,
1879 or `lsst.afw.image.ImageF`
1880 The input data structure obtained from Butler.
1881 camera : `lsst.afw.cameraGeom.camera`, optional
1882 The camera associated with the image. Used to find the appropriate
1883 detector if detector is not already set.
1884 detectorNum : `int`, optional
1885 The detector in the camera to attach, if the detector is not
1886 already set.
1888 Returns
1889 -------
1890 inputExp : `lsst.afw.image.Exposure`
1891 The re-constructed exposure, with appropriate detector parameters.
1893 Raises
1894 ------
1895 TypeError
1896 Raised if the input data cannot be used to construct an exposure.
1897 """
1898 if isinstance(inputExp, afwImage.DecoratedImageU):
1899 inputExp = afwImage.makeExposure(afwImage.makeMaskedImage(inputExp))
1900 elif isinstance(inputExp, afwImage.ImageF):
1901 inputExp = afwImage.makeExposure(afwImage.makeMaskedImage(inputExp))
1902 elif isinstance(inputExp, afwImage.MaskedImageF):
1903 inputExp = afwImage.makeExposure(inputExp)
1904 elif isinstance(inputExp, afwImage.Exposure):
1905 pass
1906 elif inputExp is None:
1907 # Assume this will be caught by the setup if it is a problem.
1908 return inputExp
1909 else:
1910 raise TypeError("Input Exposure is not known type in isrTask.ensureExposure: %s." %
1911 (type(inputExp), ))
1913 if inputExp.getDetector() is None:
1914 if camera is None or detectorNum is None:
1915 raise RuntimeError('Must supply both a camera and detector number when using exposures '
1916 'without a detector set.')
1917 inputExp.setDetector(camera[detectorNum])
1919 return inputExp
1921 def convertIntToFloat(self, exposure):
1922 """Convert exposure image from uint16 to float.
1924 If the exposure does not need to be converted, the input is
1925 immediately returned. For exposures that are converted to use
1926 floating point pixels, the variance is set to unity and the
1927 mask to zero.
1929 Parameters
1930 ----------
1931 exposure : `lsst.afw.image.Exposure`
1932 The raw exposure to be converted.
1934 Returns
1935 -------
1936 newexposure : `lsst.afw.image.Exposure`
1937 The input ``exposure``, converted to floating point pixels.
1939 Raises
1940 ------
1941 RuntimeError
1942 Raised if the exposure type cannot be converted to float.
1944 """
1945 if isinstance(exposure, afwImage.ExposureF):
1946 # Nothing to be done
1947 self.log.debug("Exposure already of type float.")
1948 return exposure
1949 if not hasattr(exposure, "convertF"):
1950 raise RuntimeError("Unable to convert exposure (%s) to float." % type(exposure))
1952 newexposure = exposure.convertF()
1953 newexposure.variance[:] = 1
1954 newexposure.mask[:] = 0x0
1956 return newexposure
1958 def maskAmplifier(self, ccdExposure, amp, defects):
1959 """Identify bad amplifiers, saturated and suspect pixels.
1961 Parameters
1962 ----------
1963 ccdExposure : `lsst.afw.image.Exposure`
1964 Input exposure to be masked.
1965 amp : `lsst.afw.table.AmpInfoCatalog`
1966 Catalog of parameters defining the amplifier on this
1967 exposure to mask.
1968 defects : `lsst.ip.isr.Defects`
1969 List of defects. Used to determine if the entire
1970 amplifier is bad.
1972 Returns
1973 -------
1974 badAmp : `Bool`
1975 If this is true, the entire amplifier area is covered by
1976 defects and unusable.
1978 """
1979 maskedImage = ccdExposure.getMaskedImage()
1981 badAmp = False
1983 # Check if entire amp region is defined as a defect
1984 # NB: need to use amp.getBBox() for correct comparison with current
1985 # defects definition.
1986 if defects is not None:
1987 badAmp = bool(sum([v.getBBox().contains(amp.getBBox()) for v in defects]))
1989 # In the case of a bad amp, we will set mask to "BAD"
1990 # (here use amp.getRawBBox() for correct association with pixels in
1991 # current ccdExposure).
1992 if badAmp:
1993 dataView = afwImage.MaskedImageF(maskedImage, amp.getRawBBox(),
1994 afwImage.PARENT)
1995 maskView = dataView.getMask()
1996 maskView |= maskView.getPlaneBitMask("BAD")
1997 del maskView
1998 return badAmp
2000 # Mask remaining defects after assembleCcd() to allow for defects that
2001 # cross amplifier boundaries. Saturation and suspect pixels can be
2002 # masked now, though.
2003 limits = dict()
2004 if self.config.doSaturation and not badAmp:
2005 limits.update({self.config.saturatedMaskName: amp.getSaturation()})
2006 if self.config.doSuspect and not badAmp:
2007 limits.update({self.config.suspectMaskName: amp.getSuspectLevel()})
2008 if math.isfinite(self.config.saturation):
2009 limits.update({self.config.saturatedMaskName: self.config.saturation})
2011 for maskName, maskThreshold in limits.items():
2012 if not math.isnan(maskThreshold):
2013 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2014 isrFunctions.makeThresholdMask(
2015 maskedImage=dataView,
2016 threshold=maskThreshold,
2017 growFootprints=0,
2018 maskName=maskName
2019 )
2021 # Determine if we've fully masked this amplifier with SUSPECT and
2022 # SAT pixels.
2023 maskView = afwImage.Mask(maskedImage.getMask(), amp.getRawDataBBox(),
2024 afwImage.PARENT)
2025 maskVal = maskView.getPlaneBitMask([self.config.saturatedMaskName,
2026 self.config.suspectMaskName])
2027 if numpy.all(maskView.getArray() & maskVal > 0):
2028 badAmp = True
2029 maskView |= maskView.getPlaneBitMask("BAD")
2031 return badAmp
2033 def overscanCorrection(self, ccdExposure, amp):
2034 """Apply overscan correction in place.
2036 This method does initial pixel rejection of the overscan
2037 region. The overscan can also be optionally segmented to
2038 allow for discontinuous overscan responses to be fit
2039 separately. The actual overscan subtraction is performed by
2040 the `lsst.ip.isr.isrFunctions.overscanCorrection` function,
2041 which is called here after the amplifier is preprocessed.
2043 Parameters
2044 ----------
2045 ccdExposure : `lsst.afw.image.Exposure`
2046 Exposure to have overscan correction performed.
2047 amp : `lsst.afw.cameraGeom.Amplifer`
2048 The amplifier to consider while correcting the overscan.
2050 Returns
2051 -------
2052 overscanResults : `lsst.pipe.base.Struct`
2053 Result struct with components:
2054 - ``imageFit`` : scalar or `lsst.afw.image.Image`
2055 Value or fit subtracted from the amplifier image data.
2056 - ``overscanFit`` : scalar or `lsst.afw.image.Image`
2057 Value or fit subtracted from the overscan image data.
2058 - ``overscanImage`` : `lsst.afw.image.Image`
2059 Image of the overscan region with the overscan
2060 correction applied. This quantity is used to estimate
2061 the amplifier read noise empirically.
2063 Raises
2064 ------
2065 RuntimeError
2066 Raised if the ``amp`` does not contain raw pixel information.
2068 See Also
2069 --------
2070 lsst.ip.isr.isrFunctions.overscanCorrection
2071 """
2072 if amp.getRawHorizontalOverscanBBox().isEmpty():
2073 self.log.info("ISR_OSCAN: No overscan region. Not performing overscan correction.")
2074 return None
2076 statControl = afwMath.StatisticsControl()
2077 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask("SAT"))
2079 # Determine the bounding boxes
2080 dataBBox = amp.getRawDataBBox()
2081 oscanBBox = amp.getRawHorizontalOverscanBBox()
2082 dx0 = 0
2083 dx1 = 0
2085 prescanBBox = amp.getRawPrescanBBox()
2086 if (oscanBBox.getBeginX() > prescanBBox.getBeginX()): # amp is at the right
2087 dx0 += self.config.overscanNumLeadingColumnsToSkip
2088 dx1 -= self.config.overscanNumTrailingColumnsToSkip
2089 else:
2090 dx0 += self.config.overscanNumTrailingColumnsToSkip
2091 dx1 -= self.config.overscanNumLeadingColumnsToSkip
2093 # Determine if we need to work on subregions of the amplifier
2094 # and overscan.
2095 imageBBoxes = []
2096 overscanBBoxes = []
2098 if ((self.config.overscanBiasJump
2099 and self.config.overscanBiasJumpLocation)
2100 and (ccdExposure.getMetadata().exists(self.config.overscanBiasJumpKeyword)
2101 and ccdExposure.getMetadata().getScalar(self.config.overscanBiasJumpKeyword) in
2102 self.config.overscanBiasJumpDevices)):
2103 if amp.getReadoutCorner() in (ReadoutCorner.LL, ReadoutCorner.LR):
2104 yLower = self.config.overscanBiasJumpLocation
2105 yUpper = dataBBox.getHeight() - yLower
2106 else:
2107 yUpper = self.config.overscanBiasJumpLocation
2108 yLower = dataBBox.getHeight() - yUpper
2110 imageBBoxes.append(lsst.geom.Box2I(dataBBox.getBegin(),
2111 lsst.geom.Extent2I(dataBBox.getWidth(), yLower)))
2112 overscanBBoxes.append(lsst.geom.Box2I(oscanBBox.getBegin() + lsst.geom.Extent2I(dx0, 0),
2113 lsst.geom.Extent2I(oscanBBox.getWidth() - dx0 + dx1,
2114 yLower)))
2116 imageBBoxes.append(lsst.geom.Box2I(dataBBox.getBegin() + lsst.geom.Extent2I(0, yLower),
2117 lsst.geom.Extent2I(dataBBox.getWidth(), yUpper)))
2118 overscanBBoxes.append(lsst.geom.Box2I(oscanBBox.getBegin() + lsst.geom.Extent2I(dx0, yLower),
2119 lsst.geom.Extent2I(oscanBBox.getWidth() - dx0 + dx1,
2120 yUpper)))
2121 else:
2122 imageBBoxes.append(lsst.geom.Box2I(dataBBox.getBegin(),
2123 lsst.geom.Extent2I(dataBBox.getWidth(), dataBBox.getHeight())))
2124 overscanBBoxes.append(lsst.geom.Box2I(oscanBBox.getBegin() + lsst.geom.Extent2I(dx0, 0),
2125 lsst.geom.Extent2I(oscanBBox.getWidth() - dx0 + dx1,
2126 oscanBBox.getHeight())))
2128 # Perform overscan correction on subregions, ensuring saturated
2129 # pixels are masked.
2130 for imageBBox, overscanBBox in zip(imageBBoxes, overscanBBoxes):
2131 ampImage = ccdExposure.maskedImage[imageBBox]
2132 overscanImage = ccdExposure.maskedImage[overscanBBox]
2134 overscanArray = overscanImage.image.array
2135 median = numpy.ma.median(numpy.ma.masked_where(overscanImage.mask.array, overscanArray))
2136 bad = numpy.where(numpy.abs(overscanArray - median) > self.config.overscanMaxDev)
2137 overscanImage.mask.array[bad] = overscanImage.mask.getPlaneBitMask("SAT")
2139 statControl = afwMath.StatisticsControl()
2140 statControl.setAndMask(ccdExposure.mask.getPlaneBitMask("SAT"))
2142 overscanResults = self.overscan.run(ampImage.getImage(), overscanImage, amp)
2144 # Measure average overscan levels and record them in the metadata.
2145 levelStat = afwMath.MEDIAN
2146 sigmaStat = afwMath.STDEVCLIP
2148 sctrl = afwMath.StatisticsControl(self.config.qa.flatness.clipSigma,
2149 self.config.qa.flatness.nIter)
2150 metadata = ccdExposure.getMetadata()
2151 ampNum = amp.getName()
2152 # if self.config.overscanFitType in ("MEDIAN", "MEAN", "MEANCLIP"):
2153 if isinstance(overscanResults.overscanFit, float):
2154 metadata[f"ISR_OSCAN_LEVEL{ampNum}"] = overscanResults.overscanFit
2155 metadata[f"ISR_OSCAN_SIGMA{ampNum}"] = 0.0
2156 else:
2157 stats = afwMath.makeStatistics(overscanResults.overscanFit, levelStat | sigmaStat, sctrl)
2158 metadata[f"ISR_OSCAN_LEVEL{ampNum}"] = stats.getValue(levelStat)
2159 metadata[f"ISR_OSCAN_SIGMA%{ampNum}"] = stats.getValue(sigmaStat)
2161 return overscanResults
2163 def updateVariance(self, ampExposure, amp, overscanImage=None, ptcDataset=None):
2164 """Set the variance plane using the gain and read noise
2166 The read noise is calculated from the ``overscanImage`` if the
2167 ``doEmpiricalReadNoise`` option is set in the configuration; otherwise
2168 the value from the amplifier data is used.
2170 Parameters
2171 ----------
2172 ampExposure : `lsst.afw.image.Exposure`
2173 Exposure to process.
2174 amp : `lsst.afw.table.AmpInfoRecord` or `FakeAmp`
2175 Amplifier detector data.
2176 overscanImage : `lsst.afw.image.MaskedImage`, optional.
2177 Image of overscan, required only for empirical read noise.
2178 ptcDataset : `lsst.ip.isr.PhotonTransferCurveDataset`, optional
2179 PTC dataset containing the gains and read noise.
2182 Raises
2183 ------
2184 RuntimeError
2185 Raised if either ``usePtcGains`` of ``usePtcReadNoise``
2186 are ``True``, but ptcDataset is not provided.
2188 Raised if ```doEmpiricalReadNoise`` is ``True`` but
2189 ``overscanImage`` is ``None``.
2191 See also
2192 --------
2193 lsst.ip.isr.isrFunctions.updateVariance
2194 """
2195 maskPlanes = [self.config.saturatedMaskName, self.config.suspectMaskName]
2196 if self.config.usePtcGains:
2197 if ptcDataset is None:
2198 raise RuntimeError("No ptcDataset provided to use PTC gains.")
2199 else:
2200 gain = ptcDataset.gain[amp.getName()]
2201 self.log.info("Using gain from Photon Transfer Curve.")
2202 else:
2203 gain = amp.getGain()
2205 if math.isnan(gain):
2206 gain = 1.0
2207 self.log.warning("Gain set to NAN! Updating to 1.0 to generate Poisson variance.")
2208 elif gain <= 0:
2209 patchedGain = 1.0
2210 self.log.warning("Gain for amp %s == %g <= 0; setting to %f.",
2211 amp.getName(), gain, patchedGain)
2212 gain = patchedGain
2214 if self.config.doEmpiricalReadNoise and overscanImage is None:
2215 raise RuntimeError("Overscan is none for EmpiricalReadNoise.")
2217 if self.config.doEmpiricalReadNoise and overscanImage is not None:
2218 stats = afwMath.StatisticsControl()
2219 stats.setAndMask(overscanImage.mask.getPlaneBitMask(maskPlanes))
2220 readNoise = afwMath.makeStatistics(overscanImage, afwMath.STDEVCLIP, stats).getValue()
2221 self.log.info("Calculated empirical read noise for amp %s: %f.",
2222 amp.getName(), readNoise)
2223 elif self.config.usePtcReadNoise:
2224 if ptcDataset is None:
2225 raise RuntimeError("No ptcDataset provided to use PTC readnoise.")
2226 else:
2227 readNoise = ptcDataset.noise[amp.getName()]
2228 self.log.info("Using read noise from Photon Transfer Curve.")
2229 else:
2230 readNoise = amp.getReadNoise()
2232 isrFunctions.updateVariance(
2233 maskedImage=ampExposure.getMaskedImage(),
2234 gain=gain,
2235 readNoise=readNoise,
2236 )
2238 def maskNegativeVariance(self, exposure):
2239 """Identify and mask pixels with negative variance values.
2241 Parameters
2242 ----------
2243 exposure : `lsst.afw.image.Exposure`
2244 Exposure to process.
2246 See Also
2247 --------
2248 lsst.ip.isr.isrFunctions.updateVariance
2249 """
2250 maskPlane = exposure.getMask().getPlaneBitMask(self.config.negativeVarianceMaskName)
2251 bad = numpy.where(exposure.getVariance().getArray() <= 0.0)
2252 exposure.mask.array[bad] |= maskPlane
2254 def darkCorrection(self, exposure, darkExposure, invert=False):
2255 """Apply dark correction in place.
2257 Parameters
2258 ----------
2259 exposure : `lsst.afw.image.Exposure`
2260 Exposure to process.
2261 darkExposure : `lsst.afw.image.Exposure`
2262 Dark exposure of the same size as ``exposure``.
2263 invert : `Bool`, optional
2264 If True, re-add the dark to an already corrected image.
2266 Raises
2267 ------
2268 RuntimeError
2269 Raised if either ``exposure`` or ``darkExposure`` do not
2270 have their dark time defined.
2272 See Also
2273 --------
2274 lsst.ip.isr.isrFunctions.darkCorrection
2275 """
2276 expScale = exposure.getInfo().getVisitInfo().getDarkTime()
2277 if math.isnan(expScale):
2278 raise RuntimeError("Exposure darktime is NAN.")
2279 if darkExposure.getInfo().getVisitInfo() is not None \
2280 and not math.isnan(darkExposure.getInfo().getVisitInfo().getDarkTime()):
2281 darkScale = darkExposure.getInfo().getVisitInfo().getDarkTime()
2282 else:
2283 # DM-17444: darkExposure.getInfo.getVisitInfo() is None
2284 # so getDarkTime() does not exist.
2285 self.log.warning("darkExposure.getInfo().getVisitInfo() does not exist. Using darkScale = 1.0.")
2286 darkScale = 1.0
2288 isrFunctions.darkCorrection(
2289 maskedImage=exposure.getMaskedImage(),
2290 darkMaskedImage=darkExposure.getMaskedImage(),
2291 expScale=expScale,
2292 darkScale=darkScale,
2293 invert=invert,
2294 trimToFit=self.config.doTrimToMatchCalib
2295 )
2297 def doLinearize(self, detector):
2298 """Check if linearization is needed for the detector cameraGeom.
2300 Checks config.doLinearize and the linearity type of the first
2301 amplifier.
2303 Parameters
2304 ----------
2305 detector : `lsst.afw.cameraGeom.Detector`
2306 Detector to get linearity type from.
2308 Returns
2309 -------
2310 doLinearize : `Bool`
2311 If True, linearization should be performed.
2312 """
2313 return self.config.doLinearize and \
2314 detector.getAmplifiers()[0].getLinearityType() != NullLinearityType
2316 def flatCorrection(self, exposure, flatExposure, invert=False):
2317 """Apply flat correction in place.
2319 Parameters
2320 ----------
2321 exposure : `lsst.afw.image.Exposure`
2322 Exposure to process.
2323 flatExposure : `lsst.afw.image.Exposure`
2324 Flat exposure of the same size as ``exposure``.
2325 invert : `Bool`, optional
2326 If True, unflatten an already flattened image.
2328 See Also
2329 --------
2330 lsst.ip.isr.isrFunctions.flatCorrection
2331 """
2332 isrFunctions.flatCorrection(
2333 maskedImage=exposure.getMaskedImage(),
2334 flatMaskedImage=flatExposure.getMaskedImage(),
2335 scalingType=self.config.flatScalingType,
2336 userScale=self.config.flatUserScale,
2337 invert=invert,
2338 trimToFit=self.config.doTrimToMatchCalib
2339 )
2341 def saturationDetection(self, exposure, amp):
2342 """Detect and mask saturated pixels in config.saturatedMaskName.
2344 Parameters
2345 ----------
2346 exposure : `lsst.afw.image.Exposure`
2347 Exposure to process. Only the amplifier DataSec is processed.
2348 amp : `lsst.afw.table.AmpInfoCatalog`
2349 Amplifier detector data.
2351 See Also
2352 --------
2353 lsst.ip.isr.isrFunctions.makeThresholdMask
2354 """
2355 if not math.isnan(amp.getSaturation()):
2356 maskedImage = exposure.getMaskedImage()
2357 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2358 isrFunctions.makeThresholdMask(
2359 maskedImage=dataView,
2360 threshold=amp.getSaturation(),
2361 growFootprints=0,
2362 maskName=self.config.saturatedMaskName,
2363 )
2365 def saturationInterpolation(self, exposure):
2366 """Interpolate over saturated pixels, in place.
2368 This method should be called after `saturationDetection`, to
2369 ensure that the saturated pixels have been identified in the
2370 SAT mask. It should also be called after `assembleCcd`, since
2371 saturated regions may cross amplifier boundaries.
2373 Parameters
2374 ----------
2375 exposure : `lsst.afw.image.Exposure`
2376 Exposure to process.
2378 See Also
2379 --------
2380 lsst.ip.isr.isrTask.saturationDetection
2381 lsst.ip.isr.isrFunctions.interpolateFromMask
2382 """
2383 isrFunctions.interpolateFromMask(
2384 maskedImage=exposure.getMaskedImage(),
2385 fwhm=self.config.fwhm,
2386 growSaturatedFootprints=self.config.growSaturationFootprintSize,
2387 maskNameList=list(self.config.saturatedMaskName),
2388 )
2390 def suspectDetection(self, exposure, amp):
2391 """Detect and mask suspect pixels in config.suspectMaskName.
2393 Parameters
2394 ----------
2395 exposure : `lsst.afw.image.Exposure`
2396 Exposure to process. Only the amplifier DataSec is processed.
2397 amp : `lsst.afw.table.AmpInfoCatalog`
2398 Amplifier detector data.
2400 See Also
2401 --------
2402 lsst.ip.isr.isrFunctions.makeThresholdMask
2404 Notes
2405 -----
2406 Suspect pixels are pixels whose value is greater than
2407 amp.getSuspectLevel(). This is intended to indicate pixels that may be
2408 affected by unknown systematics; for example if non-linearity
2409 corrections above a certain level are unstable then that would be a
2410 useful value for suspectLevel. A value of `nan` indicates that no such
2411 level exists and no pixels are to be masked as suspicious.
2412 """
2413 suspectLevel = amp.getSuspectLevel()
2414 if math.isnan(suspectLevel):
2415 return
2417 maskedImage = exposure.getMaskedImage()
2418 dataView = maskedImage.Factory(maskedImage, amp.getRawBBox())
2419 isrFunctions.makeThresholdMask(
2420 maskedImage=dataView,
2421 threshold=suspectLevel,
2422 growFootprints=0,
2423 maskName=self.config.suspectMaskName,
2424 )
2426 def maskDefect(self, exposure, defectBaseList):
2427 """Mask defects using mask plane "BAD", in place.
2429 Parameters
2430 ----------
2431 exposure : `lsst.afw.image.Exposure`
2432 Exposure to process.
2433 defectBaseList : `lsst.ip.isr.Defects` or `list` of
2434 `lsst.afw.image.DefectBase`.
2435 List of defects to mask.
2437 Notes
2438 -----
2439 Call this after CCD assembly, since defects may cross amplifier
2440 boundaries.
2441 """
2442 maskedImage = exposure.getMaskedImage()
2443 if not isinstance(defectBaseList, Defects):
2444 # Promotes DefectBase to Defect
2445 defectList = Defects(defectBaseList)
2446 else:
2447 defectList = defectBaseList
2448 defectList.maskPixels(maskedImage, maskName="BAD")
2450 def maskEdges(self, exposure, numEdgePixels=0, maskPlane="SUSPECT", level='DETECTOR'):
2451 """Mask edge pixels with applicable mask plane.
2453 Parameters
2454 ----------
2455 exposure : `lsst.afw.image.Exposure`
2456 Exposure to process.
2457 numEdgePixels : `int`, optional
2458 Number of edge pixels to mask.
2459 maskPlane : `str`, optional
2460 Mask plane name to use.
2461 level : `str`, optional
2462 Level at which to mask edges.
2463 """
2464 maskedImage = exposure.getMaskedImage()
2465 maskBitMask = maskedImage.getMask().getPlaneBitMask(maskPlane)
2467 if numEdgePixels > 0:
2468 if level == 'DETECTOR':
2469 boxes = [maskedImage.getBBox()]
2470 elif level == 'AMP':
2471 boxes = [amp.getBBox() for amp in exposure.getDetector()]
2473 for box in boxes:
2474 # This makes a bbox numEdgeSuspect pixels smaller than the
2475 # image on each side
2476 subImage = maskedImage[box]
2477 box.grow(-numEdgePixels)
2478 # Mask pixels outside box
2479 SourceDetectionTask.setEdgeBits(
2480 subImage,
2481 box,
2482 maskBitMask)
2484 def maskAndInterpolateDefects(self, exposure, defectBaseList):
2485 """Mask and interpolate defects using mask plane "BAD", in place.
2487 Parameters
2488 ----------
2489 exposure : `lsst.afw.image.Exposure`
2490 Exposure to process.
2491 defectBaseList : `lsst.ip.isr.Defects` or `list` of
2492 `lsst.afw.image.DefectBase`.
2493 List of defects to mask and interpolate.
2495 See Also
2496 --------
2497 lsst.ip.isr.isrTask.maskDefect
2498 """
2499 self.maskDefect(exposure, defectBaseList)
2500 self.maskEdges(exposure, numEdgePixels=self.config.numEdgeSuspect,
2501 maskPlane="SUSPECT", level=self.config.edgeMaskLevel)
2502 isrFunctions.interpolateFromMask(
2503 maskedImage=exposure.getMaskedImage(),
2504 fwhm=self.config.fwhm,
2505 growSaturatedFootprints=0,
2506 maskNameList=["BAD"],
2507 )
2509 def maskNan(self, exposure):
2510 """Mask NaNs using mask plane "UNMASKEDNAN", in place.
2512 Parameters
2513 ----------
2514 exposure : `lsst.afw.image.Exposure`
2515 Exposure to process.
2517 Notes
2518 -----
2519 We mask over all non-finite values (NaN, inf), including those
2520 that are masked with other bits (because those may or may not be
2521 interpolated over later, and we want to remove all NaN/infs).
2522 Despite this behaviour, the "UNMASKEDNAN" mask plane is used to
2523 preserve the historical name.
2524 """
2525 maskedImage = exposure.getMaskedImage()
2527 # Find and mask NaNs
2528 maskedImage.getMask().addMaskPlane("UNMASKEDNAN")
2529 maskVal = maskedImage.getMask().getPlaneBitMask("UNMASKEDNAN")
2530 numNans = maskNans(maskedImage, maskVal)
2531 self.metadata["NUMNANS"] = numNans
2532 if numNans > 0:
2533 self.log.warning("There were %d unmasked NaNs.", numNans)
2535 def maskAndInterpolateNan(self, exposure):
2536 """"Mask and interpolate NaN/infs using mask plane "UNMASKEDNAN",
2537 in place.
2539 Parameters
2540 ----------
2541 exposure : `lsst.afw.image.Exposure`
2542 Exposure to process.
2544 See Also
2545 --------
2546 lsst.ip.isr.isrTask.maskNan
2547 """
2548 self.maskNan(exposure)
2549 isrFunctions.interpolateFromMask(
2550 maskedImage=exposure.getMaskedImage(),
2551 fwhm=self.config.fwhm,
2552 growSaturatedFootprints=0,
2553 maskNameList=["UNMASKEDNAN"],
2554 )
2556 def measureBackground(self, exposure, IsrQaConfig=None):
2557 """Measure the image background in subgrids, for quality control.
2559 Parameters
2560 ----------
2561 exposure : `lsst.afw.image.Exposure`
2562 Exposure to process.
2563 IsrQaConfig : `lsst.ip.isr.isrQa.IsrQaConfig`
2564 Configuration object containing parameters on which background
2565 statistics and subgrids to use.
2566 """
2567 if IsrQaConfig is not None:
2568 statsControl = afwMath.StatisticsControl(IsrQaConfig.flatness.clipSigma,
2569 IsrQaConfig.flatness.nIter)
2570 maskVal = exposure.getMaskedImage().getMask().getPlaneBitMask(["BAD", "SAT", "DETECTED"])
2571 statsControl.setAndMask(maskVal)
2572 maskedImage = exposure.getMaskedImage()
2573 stats = afwMath.makeStatistics(maskedImage, afwMath.MEDIAN | afwMath.STDEVCLIP, statsControl)
2574 skyLevel = stats.getValue(afwMath.MEDIAN)
2575 skySigma = stats.getValue(afwMath.STDEVCLIP)
2576 self.log.info("Flattened sky level: %f +/- %f.", skyLevel, skySigma)
2577 metadata = exposure.getMetadata()
2578 metadata["SKYLEVEL"] = skyLevel
2579 metadata["SKYSIGMA"] = skySigma
2581 # calcluating flatlevel over the subgrids
2582 stat = afwMath.MEANCLIP if IsrQaConfig.flatness.doClip else afwMath.MEAN
2583 meshXHalf = int(IsrQaConfig.flatness.meshX/2.)
2584 meshYHalf = int(IsrQaConfig.flatness.meshY/2.)
2585 nX = int((exposure.getWidth() + meshXHalf) / IsrQaConfig.flatness.meshX)
2586 nY = int((exposure.getHeight() + meshYHalf) / IsrQaConfig.flatness.meshY)
2587 skyLevels = numpy.zeros((nX, nY))
2589 for j in range(nY):
2590 yc = meshYHalf + j * IsrQaConfig.flatness.meshY
2591 for i in range(nX):
2592 xc = meshXHalf + i * IsrQaConfig.flatness.meshX
2594 xLLC = xc - meshXHalf
2595 yLLC = yc - meshYHalf
2596 xURC = xc + meshXHalf - 1
2597 yURC = yc + meshYHalf - 1
2599 bbox = lsst.geom.Box2I(lsst.geom.Point2I(xLLC, yLLC), lsst.geom.Point2I(xURC, yURC))
2600 miMesh = maskedImage.Factory(exposure.getMaskedImage(), bbox, afwImage.LOCAL)
2602 skyLevels[i, j] = afwMath.makeStatistics(miMesh, stat, statsControl).getValue()
2604 good = numpy.where(numpy.isfinite(skyLevels))
2605 skyMedian = numpy.median(skyLevels[good])
2606 flatness = (skyLevels[good] - skyMedian) / skyMedian
2607 flatness_rms = numpy.std(flatness)
2608 flatness_pp = flatness.max() - flatness.min() if len(flatness) > 0 else numpy.nan
2610 self.log.info("Measuring sky levels in %dx%d grids: %f.", nX, nY, skyMedian)
2611 self.log.info("Sky flatness in %dx%d grids - pp: %f rms: %f.",
2612 nX, nY, flatness_pp, flatness_rms)
2614 metadata["FLATNESS_PP"] = float(flatness_pp)
2615 metadata["FLATNESS_RMS"] = float(flatness_rms)
2616 metadata["FLATNESS_NGRIDS"] = '%dx%d' % (nX, nY)
2617 metadata["FLATNESS_MESHX"] = IsrQaConfig.flatness.meshX
2618 metadata["FLATNESS_MESHY"] = IsrQaConfig.flatness.meshY
2620 def roughZeroPoint(self, exposure):
2621 """Set an approximate magnitude zero point for the exposure.
2623 Parameters
2624 ----------
2625 exposure : `lsst.afw.image.Exposure`
2626 Exposure to process.
2627 """
2628 filterLabel = exposure.getFilterLabel()
2629 physicalFilter = isrFunctions.getPhysicalFilter(filterLabel, self.log)
2631 if physicalFilter in self.config.fluxMag0T1:
2632 fluxMag0 = self.config.fluxMag0T1[physicalFilter]
2633 else:
2634 self.log.warning("No rough magnitude zero point defined for filter %s.", physicalFilter)
2635 fluxMag0 = self.config.defaultFluxMag0T1
2637 expTime = exposure.getInfo().getVisitInfo().getExposureTime()
2638 if not expTime > 0: # handle NaN as well as <= 0
2639 self.log.warning("Non-positive exposure time; skipping rough zero point.")
2640 return
2642 self.log.info("Setting rough magnitude zero point for filter %s: %f",
2643 physicalFilter, 2.5*math.log10(fluxMag0*expTime))
2644 exposure.setPhotoCalib(afwImage.makePhotoCalibFromCalibZeroPoint(fluxMag0*expTime, 0.0))
2646 def setValidPolygonIntersect(self, ccdExposure, fpPolygon):
2647 """Set valid polygon as the intersection of fpPolygon and chip corners.
2649 Parameters
2650 ----------
2651 ccdExposure : `lsst.afw.image.Exposure`
2652 Exposure to process.
2653 fpPolygon : `lsst.afw.geom.Polygon`
2654 Polygon in focal plane coordinates.
2655 """
2656 # Get ccd corners in focal plane coordinates
2657 ccd = ccdExposure.getDetector()
2658 fpCorners = ccd.getCorners(FOCAL_PLANE)
2659 ccdPolygon = Polygon(fpCorners)
2661 # Get intersection of ccd corners with fpPolygon
2662 intersect = ccdPolygon.intersectionSingle(fpPolygon)
2664 # Transform back to pixel positions and build new polygon
2665 ccdPoints = ccd.transform(intersect, FOCAL_PLANE, PIXELS)
2666 validPolygon = Polygon(ccdPoints)
2667 ccdExposure.getInfo().setValidPolygon(validPolygon)
2669 @contextmanager
2670 def flatContext(self, exp, flat, dark=None):
2671 """Context manager that applies and removes flats and darks,
2672 if the task is configured to apply them.
2674 Parameters
2675 ----------
2676 exp : `lsst.afw.image.Exposure`
2677 Exposure to process.
2678 flat : `lsst.afw.image.Exposure`
2679 Flat exposure the same size as ``exp``.
2680 dark : `lsst.afw.image.Exposure`, optional
2681 Dark exposure the same size as ``exp``.
2683 Yields
2684 ------
2685 exp : `lsst.afw.image.Exposure`
2686 The flat and dark corrected exposure.
2687 """
2688 if self.config.doDark and dark is not None:
2689 self.darkCorrection(exp, dark)
2690 if self.config.doFlat:
2691 self.flatCorrection(exp, flat)
2692 try:
2693 yield exp
2694 finally:
2695 if self.config.doFlat:
2696 self.flatCorrection(exp, flat, invert=True)
2697 if self.config.doDark and dark is not None:
2698 self.darkCorrection(exp, dark, invert=True)
2700 def debugView(self, exposure, stepname):
2701 """Utility function to examine ISR exposure at different stages.
2703 Parameters
2704 ----------
2705 exposure : `lsst.afw.image.Exposure`
2706 Exposure to view.
2707 stepname : `str`
2708 State of processing to view.
2709 """
2710 frame = getDebugFrame(self._display, stepname)
2711 if frame:
2712 display = getDisplay(frame)
2713 display.scale('asinh', 'zscale')
2714 display.mtv(exposure)
2715 prompt = "Press Enter to continue [c]... "
2716 while True:
2717 ans = input(prompt).lower()
2718 if ans in ("", "c",):
2719 break
2722class FakeAmp(object):
2723 """A Detector-like object that supports returning gain and saturation level
2725 This is used when the input exposure does not have a detector.
2727 Parameters
2728 ----------
2729 exposure : `lsst.afw.image.Exposure`
2730 Exposure to generate a fake amplifier for.
2731 config : `lsst.ip.isr.isrTaskConfig`
2732 Configuration to apply to the fake amplifier.
2733 """
2735 def __init__(self, exposure, config):
2736 self._bbox = exposure.getBBox(afwImage.LOCAL)
2737 self._RawHorizontalOverscanBBox = lsst.geom.Box2I()
2738 self._gain = config.gain
2739 self._readNoise = config.readNoise
2740 self._saturation = config.saturation
2742 def getBBox(self):
2743 return self._bbox
2745 def getRawBBox(self):
2746 return self._bbox
2748 def getRawHorizontalOverscanBBox(self):
2749 return self._RawHorizontalOverscanBBox
2751 def getGain(self):
2752 return self._gain
2754 def getReadNoise(self):
2755 return self._readNoise
2757 def getSaturation(self):
2758 return self._saturation
2760 def getSuspectLevel(self):
2761 return float("NaN")
2764class RunIsrConfig(pexConfig.Config):
2765 isr = pexConfig.ConfigurableField(target=IsrTask, doc="Instrument signature removal")
2768class RunIsrTask(pipeBase.CmdLineTask):
2769 """Task to wrap the default IsrTask to allow it to be retargeted.
2771 The standard IsrTask can be called directly from a command line
2772 program, but doing so removes the ability of the task to be
2773 retargeted. As most cameras override some set of the IsrTask
2774 methods, this would remove those data-specific methods in the
2775 output post-ISR images. This wrapping class fixes the issue,
2776 allowing identical post-ISR images to be generated by both the
2777 processCcd and isrTask code.
2778 """
2779 ConfigClass = RunIsrConfig
2780 _DefaultName = "runIsr"
2782 def __init__(self, *args, **kwargs):
2783 super().__init__(*args, **kwargs)
2784 self.makeSubtask("isr")
2786 def runDataRef(self, dataRef):
2787 """
2788 Parameters
2789 ----------
2790 dataRef : `lsst.daf.persistence.ButlerDataRef`
2791 data reference of the detector data to be processed
2793 Returns
2794 -------
2795 result : `pipeBase.Struct`
2796 Result struct with component:
2798 - exposure : `lsst.afw.image.Exposure`
2799 Post-ISR processed exposure.
2800 """
2801 return self.isr.runDataRef(dataRef)