Coverage for python/lsst/ctrl/mpexec/preExecInit.py : 10%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of ctrl_mpexec.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
22__all__ = ['PreExecInit']
24# -------------------------------
25# Imports of standard modules --
26# -------------------------------
27import logging
28import itertools
30# -----------------------------
31# Imports for other modules --
32# -----------------------------
33from lsst.base import Packages
34from lsst.daf.butler import DatasetType
35from lsst.pipe.base import PipelineDatasetTypes
37_LOG = logging.getLogger(__name__.partition(".")[2])
40class PreExecInit:
41 """Initialization of registry for QuantumGraph execution.
43 This class encapsulates all necessary operations that have to be performed
44 on butler and registry to prepare them for QuantumGraph execution.
46 Parameters
47 ----------
48 butler : `~lsst.daf.butler.Butler`
49 Data butler instance.
50 taskFactory : `~lsst.pipe.base.TaskFactory`
51 Task factory.
52 extendRun : `bool`, optional
53 If `True` then do not try to overwrite any datasets that might exist
54 in ``butler.run``; instead compare them when appropriate/possible. If
55 `False`, then any existing conflicting dataset will cause a butler
56 exception to be raised.
57 """
58 def __init__(self, butler, taskFactory, extendRun=False):
59 self.butler = butler
60 self.taskFactory = taskFactory
61 self.extendRun = extendRun
62 if self.extendRun and self.butler.run is None:
63 raise RuntimeError(
64 "Cannot perform extendRun logic unless butler is initialized "
65 "with a default output RUN collection."
66 )
68 def initialize(self, graph, saveInitOutputs=True, registerDatasetTypes=False, saveVersions=True):
69 """Perform all initialization steps.
71 Convenience method to execute all initialization steps. Instead of
72 calling this method and providing all options it is also possible to
73 call methods individually.
75 Parameters
76 ----------
77 graph : `~lsst.pipe.base.QuantumGraph`
78 Execution graph.
79 saveInitOutputs : `bool`, optional
80 If ``True`` (default) then save "init outputs", configurations,
81 and package versions to butler.
82 registerDatasetTypes : `bool`, optional
83 If ``True`` then register dataset types in registry, otherwise
84 they must be already registered.
85 saveVersions : `bool`, optional
86 If ``False`` then do not save package versions even if
87 ``saveInitOutputs`` is set to ``True``.
88 """
89 # register dataset types or check consistency
90 self.initializeDatasetTypes(graph, registerDatasetTypes)
92 # Save task initialization data or check that saved data
93 # is consistent with what tasks would save
94 if saveInitOutputs:
95 self.saveInitOutputs(graph)
96 self.saveConfigs(graph)
97 if saveVersions:
98 self.savePackageVersions(graph)
100 def initializeDatasetTypes(self, graph, registerDatasetTypes=False):
101 """Save or check DatasetTypes output by the tasks in a graph.
103 Iterates over all DatasetTypes for all tasks in a graph and either
104 tries to add them to registry or compares them to exising ones.
106 Parameters
107 ----------
108 graph : `~lsst.pipe.base.QuantumGraph`
109 Execution graph.
110 registerDatasetTypes : `bool`, optional
111 If ``True`` then register dataset types in registry, otherwise
112 they must be already registered.
114 Raises
115 ------
116 ValueError
117 Raised if existing DatasetType is different from DatasetType
118 in a graph.
119 KeyError
120 Raised if ``registerDatasetTypes`` is ``False`` and DatasetType
121 does not exist in registry.
122 """
123 pipeline = graph.taskGraph
124 datasetTypes = PipelineDatasetTypes.fromPipeline(pipeline, registry=self.butler.registry,
125 include_configs=True, include_packages=True)
126 for datasetType in itertools.chain(datasetTypes.initIntermediates, datasetTypes.initOutputs,
127 datasetTypes.intermediates, datasetTypes.outputs):
128 # Only composites are registered, no components, and by this point
129 # the composite should already exist.
130 if registerDatasetTypes and not datasetType.isComponent():
131 _LOG.debug("Registering DatasetType %s with registry", datasetType)
132 # this is a no-op if it already exists and is consistent,
133 # and it raises if it is inconsistent.
134 self.butler.registry.registerDatasetType(datasetType)
135 else:
136 _LOG.debug("Checking DatasetType %s against registry", datasetType)
137 expected = self.butler.registry.getDatasetType(datasetType.name)
138 if datasetType.isComponent() \
139 and datasetType.parentStorageClass == DatasetType.PlaceholderParentStorageClass:
140 # Force the parent storage classes to match since we
141 # are using a placeholder
142 datasetType.finalizeParentStorageClass(expected.parentStorageClass)
143 if expected != datasetType:
144 raise ValueError(f"DatasetType configuration does not match Registry: "
145 f"{datasetType} != {expected}")
147 def saveInitOutputs(self, graph):
148 """Write any datasets produced by initializing tasks in a graph.
150 Parameters
151 ----------
152 graph : `~lsst.pipe.base.QuantumGraph`
153 Execution graph.
155 Raises
156 ------
157 TypeError
158 Raised if ``extendRun`` is `True` but type of existing object in
159 butler is different from new data.
160 Exception
161 Raised if ``extendRun`` is `False` and datasets already
162 exists. Content of a butler collection may be changed if
163 exception is raised.
165 Notes
166 -----
167 If ``extendRun`` is `True` then existing datasets are not
168 overwritten, instead we should check that their stored object is
169 exactly the same as what we would save at this time. Comparing
170 arbitrary types of object is, of course, non-trivial. Current
171 implementation only checks the existence of the datasets and their
172 types against the types of objects produced by tasks. Ideally we
173 would like to check that object data is identical too but presently
174 there is no generic way to compare objects. In the future we can
175 potentially introduce some extensible mechanism for that.
176 """
177 _LOG.debug("Will save InitOutputs for all tasks")
178 for taskDef in graph.iterTaskGraph():
179 task = self.taskFactory.makeTask(taskDef.taskClass,
180 taskDef.label,
181 taskDef.config,
182 None,
183 self.butler)
184 for name in taskDef.connections.initOutputs:
185 attribute = getattr(taskDef.connections, name)
186 initOutputVar = getattr(task, name)
187 objFromStore = None
188 if self.extendRun:
189 # check if it is there already
190 _LOG.debug("Retrieving InitOutputs for task=%s key=%s dsTypeName=%s",
191 task, name, attribute.name)
192 try:
193 objFromStore = self.butler.get(attribute.name, {}, collections=[self.butler.run])
194 # Types are supposed to be identical.
195 # TODO: Check that object contents is identical too.
196 if type(objFromStore) is not type(initOutputVar):
197 raise TypeError(f"Stored initOutput object type {type(objFromStore)} "
198 f"is different from task-generated type "
199 f"{type(initOutputVar)} for task {taskDef}")
200 except (LookupError, FileNotFoundError):
201 # FileNotFoundError likely means execution butler
202 # where refs do exist but datastore artifacts do not.
203 pass
204 if objFromStore is None:
205 # butler will raise exception if dataset is already there
206 _LOG.debug("Saving InitOutputs for task=%s key=%s", task, name)
207 self.butler.put(initOutputVar, attribute.name, {})
209 def saveConfigs(self, graph):
210 """Write configurations for pipeline tasks to butler or check that
211 existing configurations are equal to the new ones.
213 Parameters
214 ----------
215 graph : `~lsst.pipe.base.QuantumGraph`
216 Execution graph.
218 Raises
219 ------
220 TypeError
221 Raised if ``extendRun`` is `True` but existing object in butler is
222 different from new data.
223 Exception
224 Raised if ``extendRun`` is `False` and datasets already exists.
225 Content of a butler collection should not be changed if exception
226 is raised.
227 """
228 def logConfigMismatch(msg):
229 """Log messages about configuration mismatch.
230 """
231 _LOG.fatal("Comparing configuration: %s", msg)
233 _LOG.debug("Will save Configs for all tasks")
234 # start transaction to rollback any changes on exceptions
235 with self.butler.transaction():
236 for taskDef in graph.taskGraph:
237 configName = taskDef.configDatasetName
239 oldConfig = None
240 if self.extendRun:
241 try:
242 oldConfig = self.butler.get(configName, {}, collections=[self.butler.run])
243 if not taskDef.config.compare(oldConfig, shortcut=False, output=logConfigMismatch):
244 raise TypeError(
245 f"Config does not match existing task config {configName!r} in butler; "
246 "tasks configurations must be consistent within the same run collection")
247 except (LookupError, FileNotFoundError):
248 # FileNotFoundError likely means execution butler
249 # where refs do exist but datastore artifacts do not.
250 pass
251 if oldConfig is None:
252 # butler will raise exception if dataset is already there
253 _LOG.debug("Saving Config for task=%s dataset type=%s", taskDef.label, configName)
254 self.butler.put(taskDef.config, configName, {})
256 def savePackageVersions(self, graph):
257 """Write versions of software packages to butler.
259 Parameters
260 ----------
261 graph : `~lsst.pipe.base.QuantumGraph`
262 Execution graph.
264 Raises
265 ------
266 TypeError
267 Raised if ``extendRun`` is `True` but existing object in butler is
268 different from new data.
269 """
270 packages = Packages.fromSystem()
271 _LOG.debug("want to save packages: %s", packages)
272 datasetType = PipelineDatasetTypes.packagesDatasetName
273 dataId = {}
274 oldPackages = None
275 # start transaction to rollback any changes on exceptions
276 with self.butler.transaction():
277 if self.extendRun:
278 try:
279 oldPackages = self.butler.get(datasetType, dataId, collections=[self.butler.run])
280 _LOG.debug("old packages: %s", oldPackages)
281 except (LookupError, FileNotFoundError):
282 # FileNotFoundError likely means execution butler where
283 # refs do exist but datastore artifacts do not.
284 pass
285 if oldPackages is not None:
286 # Note that because we can only detect python modules that have
287 # been imported, the stored list of products may be more or
288 # less complete than what we have now. What's important is
289 # that the products that are in common have the same version.
290 diff = packages.difference(oldPackages)
291 if diff:
292 versions_str = "; ".join(f"{pkg}: {diff[pkg][1]} vs {diff[pkg][0]}" for pkg in diff)
293 raise TypeError(f"Package versions mismatch: ({versions_str})")
294 else:
295 _LOG.debug("new packages are consistent with old")
296 # Update the old set of packages in case we have more packages
297 # that haven't been persisted.
298 extra = packages.extra(oldPackages)
299 if extra:
300 _LOG.debug("extra packages: %s", extra)
301 oldPackages.update(packages)
302 # have to remove existing dataset first, butler has no
303 # replace option.
304 ref = self.butler.registry.findDataset(datasetType, dataId, collections=[self.butler.run])
305 self.butler.pruneDatasets([ref], unstore=True, purge=True)
306 self.butler.put(oldPackages, datasetType, dataId)
307 else:
308 self.butler.put(packages, datasetType, dataId)