Coverage for python/lsst/pipe/base/connections.py : 44%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of pipe_base.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
22"""Module defining connection classes for PipelineTask.
23"""
25from __future__ import annotations
27__all__ = [
28 "AdjustQuantumHelper",
29 "DeferredDatasetRef",
30 "InputQuantizedConnection",
31 "OutputQuantizedConnection",
32 "PipelineTaskConnections",
33 "iterConnections",
34]
36from collections import UserDict, namedtuple
37from dataclasses import dataclass
38from types import SimpleNamespace
39import typing
40from typing import Union, Iterable
42import itertools
43import string
45from . import config as configMod
46from .connectionTypes import (InitInput, InitOutput, Input, PrerequisiteInput,
47 Output, BaseConnection, BaseInput)
48from ._status import NoWorkFound
49from lsst.daf.butler import DataCoordinate, DatasetRef, DatasetType, NamedKeyDict, NamedKeyMapping, Quantum
51if typing.TYPE_CHECKING: 51 ↛ 52line 51 didn't jump to line 52, because the condition on line 51 was never true
52 from .config import PipelineTaskConfig
55class ScalarError(TypeError):
56 """Exception raised when dataset type is configured as scalar
57 but there are multiple data IDs in a Quantum for that dataset.
58 """
61class PipelineTaskConnectionDict(UserDict):
62 """This is a special dict class used by PipelineTaskConnectionMetaclass
64 This dict is used in PipelineTaskConnection class creation, as the
65 dictionary that is initially used as __dict__. It exists to
66 intercept connection fields declared in a PipelineTaskConnection, and
67 what name is used to identify them. The names are then added to class
68 level list according to the connection type of the class attribute. The
69 names are also used as keys in a class level dictionary associated with
70 the corresponding class attribute. This information is a duplicate of
71 what exists in __dict__, but provides a simple place to lookup and
72 iterate on only these variables.
73 """
74 def __init__(self, *args, **kwargs):
75 super().__init__(*args, **kwargs)
76 # Initialize class level variables used to track any declared
77 # class level variables that are instances of
78 # connectionTypes.BaseConnection
79 self.data['inputs'] = []
80 self.data['prerequisiteInputs'] = []
81 self.data['outputs'] = []
82 self.data['initInputs'] = []
83 self.data['initOutputs'] = []
84 self.data['allConnections'] = {}
86 def __setitem__(self, name, value):
87 if isinstance(value, Input):
88 self.data['inputs'].append(name)
89 elif isinstance(value, PrerequisiteInput):
90 self.data['prerequisiteInputs'].append(name)
91 elif isinstance(value, Output):
92 self.data['outputs'].append(name)
93 elif isinstance(value, InitInput):
94 self.data['initInputs'].append(name)
95 elif isinstance(value, InitOutput):
96 self.data['initOutputs'].append(name)
97 # This should not be an elif, as it needs tested for
98 # everything that inherits from BaseConnection
99 if isinstance(value, BaseConnection):
100 object.__setattr__(value, 'varName', name)
101 self.data['allConnections'][name] = value
102 # defer to the default behavior
103 super().__setitem__(name, value)
106class PipelineTaskConnectionsMetaclass(type):
107 """Metaclass used in the declaration of PipelineTaskConnections classes
108 """
109 def __prepare__(name, bases, **kwargs): # noqa: 805
110 # Create an instance of our special dict to catch and track all
111 # variables that are instances of connectionTypes.BaseConnection
112 # Copy any existing connections from a parent class
113 dct = PipelineTaskConnectionDict()
114 for base in bases:
115 if isinstance(base, PipelineTaskConnectionsMetaclass): 115 ↛ 114line 115 didn't jump to line 114, because the condition on line 115 was never false
116 for name, value in base.allConnections.items(): 116 ↛ 117line 116 didn't jump to line 117, because the loop on line 116 never started
117 dct[name] = value
118 return dct
120 def __new__(cls, name, bases, dct, **kwargs):
121 dimensionsValueError = TypeError("PipelineTaskConnections class must be created with a dimensions "
122 "attribute which is an iterable of dimension names")
124 if name != 'PipelineTaskConnections':
125 # Verify that dimensions are passed as a keyword in class
126 # declaration
127 if 'dimensions' not in kwargs: 127 ↛ 128line 127 didn't jump to line 128, because the condition on line 127 was never true
128 for base in bases:
129 if hasattr(base, 'dimensions'):
130 kwargs['dimensions'] = base.dimensions
131 break
132 if 'dimensions' not in kwargs:
133 raise dimensionsValueError
134 try:
135 if isinstance(kwargs['dimensions'], str): 135 ↛ 136line 135 didn't jump to line 136, because the condition on line 135 was never true
136 raise TypeError("Dimensions must be iterable of dimensions, got str,"
137 "possibly omitted trailing comma")
138 if not isinstance(kwargs['dimensions'], typing.Iterable): 138 ↛ 139line 138 didn't jump to line 139, because the condition on line 138 was never true
139 raise TypeError("Dimensions must be iterable of dimensions")
140 dct['dimensions'] = set(kwargs['dimensions'])
141 except TypeError as exc:
142 raise dimensionsValueError from exc
143 # Lookup any python string templates that may have been used in the
144 # declaration of the name field of a class connection attribute
145 allTemplates = set()
146 stringFormatter = string.Formatter()
147 # Loop over all connections
148 for obj in dct['allConnections'].values():
149 nameValue = obj.name
150 # add all the parameters to the set of templates
151 for param in stringFormatter.parse(nameValue):
152 if param[1] is not None:
153 allTemplates.add(param[1])
155 # look up any template from base classes and merge them all
156 # together
157 mergeDict = {}
158 for base in bases[::-1]:
159 if hasattr(base, 'defaultTemplates'): 159 ↛ 160line 159 didn't jump to line 160, because the condition on line 159 was never true
160 mergeDict.update(base.defaultTemplates)
161 if 'defaultTemplates' in kwargs:
162 mergeDict.update(kwargs['defaultTemplates'])
164 if len(mergeDict) > 0:
165 kwargs['defaultTemplates'] = mergeDict
167 # Verify that if templated strings were used, defaults were
168 # supplied as an argument in the declaration of the connection
169 # class
170 if len(allTemplates) > 0 and 'defaultTemplates' not in kwargs: 170 ↛ 171line 170 didn't jump to line 171, because the condition on line 170 was never true
171 raise TypeError("PipelineTaskConnection class contains templated attribute names, but no "
172 "defaut templates were provided, add a dictionary attribute named "
173 "defaultTemplates which contains the mapping between template key and value")
174 if len(allTemplates) > 0:
175 # Verify all templates have a default, and throw if they do not
176 defaultTemplateKeys = set(kwargs['defaultTemplates'].keys())
177 templateDifference = allTemplates.difference(defaultTemplateKeys)
178 if templateDifference: 178 ↛ 179line 178 didn't jump to line 179, because the condition on line 178 was never true
179 raise TypeError(f"Default template keys were not provided for {templateDifference}")
180 # Verify that templates do not share names with variable names
181 # used for a connection, this is needed because of how
182 # templates are specified in an associated config class.
183 nameTemplateIntersection = allTemplates.intersection(set(dct['allConnections'].keys()))
184 if len(nameTemplateIntersection) > 0: 184 ↛ 185line 184 didn't jump to line 185, because the condition on line 184 was never true
185 raise TypeError(f"Template parameters cannot share names with Class attributes"
186 f" (conflicts are {nameTemplateIntersection}).")
187 dct['defaultTemplates'] = kwargs.get('defaultTemplates', {})
189 # Convert all the connection containers into frozensets so they cannot
190 # be modified at the class scope
191 for connectionName in ("inputs", "prerequisiteInputs", "outputs", "initInputs", "initOutputs"):
192 dct[connectionName] = frozenset(dct[connectionName])
193 # our custom dict type must be turned into an actual dict to be used in
194 # type.__new__
195 return super().__new__(cls, name, bases, dict(dct))
197 def __init__(cls, name, bases, dct, **kwargs):
198 # This overrides the default init to drop the kwargs argument. Python
199 # metaclasses will have this argument set if any kwargs are passes at
200 # class construction time, but should be consumed before calling
201 # __init__ on the type metaclass. This is in accordance with python
202 # documentation on metaclasses
203 super().__init__(name, bases, dct)
206class QuantizedConnection(SimpleNamespace):
207 """A Namespace to map defined variable names of connections to the
208 associated `lsst.daf.butler.DatasetRef` objects.
210 This class maps the names used to define a connection on a
211 PipelineTaskConnectionsClass to the corresponding
212 `lsst.daf.butler.DatasetRef`s provided by a `lsst.daf.butler.Quantum`
213 instance. This will be a quantum of execution based on the graph created
214 by examining all the connections defined on the
215 `PipelineTaskConnectionsClass`.
216 """
217 def __init__(self, **kwargs):
218 # Create a variable to track what attributes are added. This is used
219 # later when iterating over this QuantizedConnection instance
220 object.__setattr__(self, "_attributes", set())
222 def __setattr__(self, name: str, value: typing.Union[DatasetRef, typing.List[DatasetRef]]):
223 # Capture the attribute name as it is added to this object
224 self._attributes.add(name)
225 super().__setattr__(name, value)
227 def __delattr__(self, name):
228 object.__delattr__(self, name)
229 self._attributes.remove(name)
231 def __iter__(self) -> typing.Generator[typing.Tuple[str, typing.Union[DatasetRef,
232 typing.List[DatasetRef]]], None, None]:
233 """Make an Iterator for this QuantizedConnection
235 Iterating over a QuantizedConnection will yield a tuple with the name
236 of an attribute and the value associated with that name. This is
237 similar to dict.items() but is on the namespace attributes rather than
238 dict keys.
239 """
240 yield from ((name, getattr(self, name)) for name in self._attributes)
242 def keys(self) -> typing.Generator[str, None, None]:
243 """Returns an iterator over all the attributes added to a
244 QuantizedConnection class
245 """
246 yield from self._attributes
249class InputQuantizedConnection(QuantizedConnection):
250 pass
253class OutputQuantizedConnection(QuantizedConnection):
254 pass
257class DeferredDatasetRef(namedtuple("DeferredDatasetRefBase", "datasetRef")):
258 """Class which denotes that a datasetRef should be treated as deferred when
259 interacting with the butler
261 Parameters
262 ----------
263 datasetRef : `lsst.daf.butler.DatasetRef`
264 The `lsst.daf.butler.DatasetRef` that will be eventually used to
265 resolve a dataset
266 """
267 __slots__ = ()
270class PipelineTaskConnections(metaclass=PipelineTaskConnectionsMetaclass):
271 """PipelineTaskConnections is a class used to declare desired IO when a
272 PipelineTask is run by an activator
274 Parameters
275 ----------
276 config : `PipelineTaskConfig`
277 A `PipelineTaskConfig` class instance whose class has been configured
278 to use this `PipelineTaskConnectionsClass`
280 See also
281 --------
282 iterConnections
284 Notes
285 -----
286 ``PipelineTaskConnection`` classes are created by declaring class
287 attributes of types defined in `lsst.pipe.base.connectionTypes` and are
288 listed as follows:
290 * ``InitInput`` - Defines connections in a quantum graph which are used as
291 inputs to the ``__init__`` function of the `PipelineTask` corresponding
292 to this class
293 * ``InitOuput`` - Defines connections in a quantum graph which are to be
294 persisted using a butler at the end of the ``__init__`` function of the
295 `PipelineTask` corresponding to this class. The variable name used to
296 define this connection should be the same as an attribute name on the
297 `PipelineTask` instance. E.g. if an ``InitOutput`` is declared with
298 the name ``outputSchema`` in a ``PipelineTaskConnections`` class, then
299 a `PipelineTask` instance should have an attribute
300 ``self.outputSchema`` defined. Its value is what will be saved by the
301 activator framework.
302 * ``PrerequisiteInput`` - An input connection type that defines a
303 `lsst.daf.butler.DatasetType` that must be present at execution time,
304 but that will not be used during the course of creating the quantum
305 graph to be executed. These most often are things produced outside the
306 processing pipeline, such as reference catalogs.
307 * ``Input`` - Input `lsst.daf.butler.DatasetType` objects that will be used
308 in the ``run`` method of a `PipelineTask`. The name used to declare
309 class attribute must match a function argument name in the ``run``
310 method of a `PipelineTask`. E.g. If the ``PipelineTaskConnections``
311 defines an ``Input`` with the name ``calexp``, then the corresponding
312 signature should be ``PipelineTask.run(calexp, ...)``
313 * ``Output`` - A `lsst.daf.butler.DatasetType` that will be produced by an
314 execution of a `PipelineTask`. The name used to declare the connection
315 must correspond to an attribute of a `Struct` that is returned by a
316 `PipelineTask` ``run`` method. E.g. if an output connection is
317 defined with the name ``measCat``, then the corresponding
318 ``PipelineTask.run`` method must return ``Struct(measCat=X,..)`` where
319 X matches the ``storageClass`` type defined on the output connection.
321 The process of declaring a ``PipelineTaskConnection`` class involves
322 parameters passed in the declaration statement.
324 The first parameter is ``dimensions`` which is an iterable of strings which
325 defines the unit of processing the run method of a corresponding
326 `PipelineTask` will operate on. These dimensions must match dimensions that
327 exist in the butler registry which will be used in executing the
328 corresponding `PipelineTask`.
330 The second parameter is labeled ``defaultTemplates`` and is conditionally
331 optional. The name attributes of connections can be specified as python
332 format strings, with named format arguments. If any of the name parameters
333 on connections defined in a `PipelineTaskConnections` class contain a
334 template, then a default template value must be specified in the
335 ``defaultTemplates`` argument. This is done by passing a dictionary with
336 keys corresponding to a template identifier, and values corresponding to
337 the value to use as a default when formatting the string. For example if
338 ``ConnectionClass.calexp.name = '{input}Coadd_calexp'`` then
339 ``defaultTemplates`` = {'input': 'deep'}.
341 Once a `PipelineTaskConnections` class is created, it is used in the
342 creation of a `PipelineTaskConfig`. This is further documented in the
343 documentation of `PipelineTaskConfig`. For the purposes of this
344 documentation, the relevant information is that the config class allows
345 configuration of connection names by users when running a pipeline.
347 Instances of a `PipelineTaskConnections` class are used by the pipeline
348 task execution framework to introspect what a corresponding `PipelineTask`
349 will require, and what it will produce.
351 Examples
352 --------
353 >>> from lsst.pipe.base import connectionTypes as cT
354 >>> from lsst.pipe.base import PipelineTaskConnections
355 >>> from lsst.pipe.base import PipelineTaskConfig
356 >>> class ExampleConnections(PipelineTaskConnections,
357 ... dimensions=("A", "B"),
358 ... defaultTemplates={"foo": "Example"}):
359 ... inputConnection = cT.Input(doc="Example input",
360 ... dimensions=("A", "B"),
361 ... storageClass=Exposure,
362 ... name="{foo}Dataset")
363 ... outputConnection = cT.Output(doc="Example output",
364 ... dimensions=("A", "B"),
365 ... storageClass=Exposure,
366 ... name="{foo}output")
367 >>> class ExampleConfig(PipelineTaskConfig,
368 ... pipelineConnections=ExampleConnections):
369 ... pass
370 >>> config = ExampleConfig()
371 >>> config.connections.foo = Modified
372 >>> config.connections.outputConnection = "TotallyDifferent"
373 >>> connections = ExampleConnections(config=config)
374 >>> assert(connections.inputConnection.name == "ModifiedDataset")
375 >>> assert(connections.outputConnection.name == "TotallyDifferent")
376 """
378 def __init__(self, *, config: 'PipelineTaskConfig' = None):
379 self.inputs = set(self.inputs)
380 self.prerequisiteInputs = set(self.prerequisiteInputs)
381 self.outputs = set(self.outputs)
382 self.initInputs = set(self.initInputs)
383 self.initOutputs = set(self.initOutputs)
384 self.allConnections = dict(self.allConnections)
386 if config is None or not isinstance(config, configMod.PipelineTaskConfig):
387 raise ValueError("PipelineTaskConnections must be instantiated with"
388 " a PipelineTaskConfig instance")
389 self.config = config
390 # Extract the template names that were defined in the config instance
391 # by looping over the keys of the defaultTemplates dict specified at
392 # class declaration time
393 templateValues = {name: getattr(config.connections, name) for name in getattr(self,
394 'defaultTemplates').keys()}
395 # Extract the configured value corresponding to each connection
396 # variable. I.e. for each connection identifier, populate a override
397 # for the connection.name attribute
398 self._nameOverrides = {name: getattr(config.connections, name).format(**templateValues)
399 for name in self.allConnections.keys()}
401 # connections.name corresponds to a dataset type name, create a reverse
402 # mapping that goes from dataset type name to attribute identifier name
403 # (variable name) on the connection class
404 self._typeNameToVarName = {v: k for k, v in self._nameOverrides.items()}
406 def buildDatasetRefs(self, quantum: Quantum) -> typing.Tuple[InputQuantizedConnection,
407 OutputQuantizedConnection]:
408 """Builds QuantizedConnections corresponding to input Quantum
410 Parameters
411 ----------
412 quantum : `lsst.daf.butler.Quantum`
413 Quantum object which defines the inputs and outputs for a given
414 unit of processing
416 Returns
417 -------
418 retVal : `tuple` of (`InputQuantizedConnection`,
419 `OutputQuantizedConnection`) Namespaces mapping attribute names
420 (identifiers of connections) to butler references defined in the
421 input `lsst.daf.butler.Quantum`
422 """
423 inputDatasetRefs = InputQuantizedConnection()
424 outputDatasetRefs = OutputQuantizedConnection()
425 # operate on a reference object and an interable of names of class
426 # connection attributes
427 for refs, names in zip((inputDatasetRefs, outputDatasetRefs),
428 (itertools.chain(self.inputs, self.prerequisiteInputs), self.outputs)):
429 # get a name of a class connection attribute
430 for attributeName in names:
431 # get the attribute identified by name
432 attribute = getattr(self, attributeName)
433 # Branch if the attribute dataset type is an input
434 if attribute.name in quantum.inputs:
435 # Get the DatasetRefs
436 quantumInputRefs = quantum.inputs[attribute.name]
437 # if the dataset is marked to load deferred, wrap it in a
438 # DeferredDatasetRef
439 if attribute.deferLoad:
440 quantumInputRefs = [DeferredDatasetRef(datasetRef=ref) for ref in quantumInputRefs]
441 # Unpack arguments that are not marked multiples (list of
442 # length one)
443 if not attribute.multiple:
444 if len(quantumInputRefs) > 1:
445 raise ScalarError(
446 f"Received multiple datasets "
447 f"{', '.join(str(r.dataId) for r in quantumInputRefs)} "
448 f"for scalar connection {attributeName} "
449 f"({quantumInputRefs[0].datasetType.name}) "
450 f"of quantum for {quantum.taskName} with data ID {quantum.dataId}."
451 )
452 if len(quantumInputRefs) == 0:
453 continue
454 quantumInputRefs = quantumInputRefs[0]
455 # Add to the QuantizedConnection identifier
456 setattr(refs, attributeName, quantumInputRefs)
457 # Branch if the attribute dataset type is an output
458 elif attribute.name in quantum.outputs:
459 value = quantum.outputs[attribute.name]
460 # Unpack arguments that are not marked multiples (list of
461 # length one)
462 if not attribute.multiple:
463 value = value[0]
464 # Add to the QuantizedConnection identifier
465 setattr(refs, attributeName, value)
466 # Specified attribute is not in inputs or outputs dont know how
467 # to handle, throw
468 else:
469 raise ValueError(f"Attribute with name {attributeName} has no counterpoint "
470 "in input quantum")
471 return inputDatasetRefs, outputDatasetRefs
473 def adjustQuantum(
474 self,
475 inputs: typing.Dict[str, typing.Tuple[BaseInput, typing.Collection[DatasetRef]]],
476 outputs: typing.Dict[str, typing.Tuple[Output, typing.Collection[DatasetRef]]],
477 label: str,
478 data_id: DataCoordinate,
479 ) -> tuple.Tuple[typing.Mapping[str, typing.Tuple[BaseInput, typing.Collection[DatasetRef]]],
480 typing.Mapping[str, typing.Tuple[Output, typing.Collection[DatasetRef]]]]:
481 """Override to make adjustments to `lsst.daf.butler.DatasetRef` objects
482 in the `lsst.daf.butler.core.Quantum` during the graph generation stage
483 of the activator.
485 Parameters
486 ----------
487 inputs : `dict`
488 Dictionary whose keys are an input (regular or prerequisite)
489 connection name and whose values are a tuple of the connection
490 instance and a collection of associated `DatasetRef` objects.
491 The exact type of the nested collections is unspecified; it can be
492 assumed to be multi-pass iterable and support `len` and ``in``, but
493 it should not be mutated in place. In contrast, the outer
494 dictionaries are guaranteed to be temporary copies that are true
495 `dict` instances, and hence may be modified and even returned; this
496 is especially useful for delegating to `super` (see notes below).
497 outputs : `Mapping`
498 Mapping of output datasets, with the same structure as ``inputs``.
499 label : `str`
500 Label for this task in the pipeline (should be used in all
501 diagnostic messages).
502 data_id : `lsst.daf.butler.DataCoordinate`
503 Data ID for this quantum in the pipeline (should be used in all
504 diagnostic messages).
506 Returns
507 -------
508 adjusted_inputs : `Mapping`
509 Mapping of the same form as ``inputs`` with updated containers of
510 input `DatasetRef` objects. Connections that are not changed
511 should not be returned at all. Datasets may only be removed, not
512 added. Nested collections may be of any multi-pass iterable type,
513 and the order of iteration will set the order of iteration within
514 `PipelineTask.runQuantum`.
515 adjusted_outputs : `Mapping`
516 Mapping of updated output datasets, with the same structure and
517 interpretation as ``adjusted_inputs``.
519 Raises
520 ------
521 ScalarError
522 Raised if any `Input` or `PrerequisiteInput` connection has
523 ``multiple`` set to `False`, but multiple datasets.
524 NoWorkFound
525 Raised to indicate that this quantum should not be run; not enough
526 datasets were found for a regular `Input` connection, and the
527 quantum should be pruned or skipped.
528 FileNotFoundError
529 Raised to cause QuantumGraph generation to fail (with the message
530 included in this exception); not enough datasets were found for a
531 `PrerequisiteInput` connection.
533 Notes
534 -----
535 The base class implementation performs important checks. It always
536 returns an empty mapping (i.e. makes no adjustments). It should
537 always called be via `super` by custom implementations, ideally at the
538 end of the custom implementation with already-adjusted mappings when
539 any datasets are actually dropped, e.g.::
541 def adjustQuantum(self, inputs, outputs, label, data_id):
542 # Filter out some dataset refs for one connection.
543 connection, old_refs = inputs["my_input"]
544 new_refs = [ref for ref in old_refs if ...]
545 adjusted_inputs = {"my_input", (connection, new_refs)}
546 # Update the original inputs so we can pass them to super.
547 inputs.update(adjusted_inputs)
548 # Can ignore outputs from super because they are guaranteed
549 # to be empty.
550 super().adjustQuantum(inputs, outputs, label_data_id)
551 # Return only the connections we modified.
552 return adjusted_inputs, {}
554 Removing outputs here is guaranteed to affect what is actually
555 passed to `PipelineTask.runQuantum`, but its effect on the larger
556 graph may be deferred to execution, depending on the context in
557 which `adjustQuantum` is being run: if one quantum removes an output
558 that is needed by a second quantum as input, the second quantum may not
559 be adjusted (and hence pruned or skipped) until that output is actually
560 found to be missing at execution time.
562 Tasks that desire zip-iteration consistency between any combinations of
563 connections that have the same data ID should generally implement
564 `adjustQuantum` to achieve this, even if they could also run that
565 logic during execution; this allows the system to see outputs that will
566 not be produced because the corresponding input is missing as early as
567 possible.
568 """
569 for name, (connection, refs) in inputs.items():
570 dataset_type_name = connection.name
571 if not connection.multiple and len(refs) > 1:
572 raise ScalarError(
573 f"Found multiple datasets {', '.join(str(r.dataId) for r in refs)} "
574 f"for non-multiple input connection {label}.{name} ({dataset_type_name}) "
575 f"for quantum data ID {data_id}."
576 )
577 if len(refs) < connection.minimum:
578 if isinstance(connection, PrerequisiteInput):
579 # This branch should only be possible during QG generation,
580 # or if someone deleted the dataset between making the QG
581 # and trying to run it. Either one should be a hard error.
582 raise FileNotFoundError(
583 f"Not enough datasets ({len(refs)}) found for non-optional connection {label}.{name} "
584 f"({dataset_type_name}) with minimum={connection.minimum} for quantum data ID "
585 f"{data_id}."
586 )
587 else:
588 # This branch should be impossible during QG generation,
589 # because that algorithm can only make quanta whose inputs
590 # are either already present or should be created during
591 # execution. It can trigger during execution if the input
592 # wasn't actually created by an upstream task in the same
593 # graph.
594 raise NoWorkFound(label, name, connection)
595 for name, (connection, refs) in outputs.items():
596 dataset_type_name = connection.name
597 if not connection.multiple and len(refs) > 1:
598 raise ScalarError(
599 f"Found multiple datasets {', '.join(str(r.dataId) for r in refs)} "
600 f"for non-multiple output connection {label}.{name} ({dataset_type_name}) "
601 f"for quantum data ID {data_id}."
602 )
603 return {}, {}
606def iterConnections(connections: PipelineTaskConnections,
607 connectionType: Union[str, Iterable[str]]
608 ) -> typing.Generator[BaseConnection, None, None]:
609 """Creates an iterator over the selected connections type which yields
610 all the defined connections of that type.
612 Parameters
613 ----------
614 connections: `PipelineTaskConnections`
615 An instance of a `PipelineTaskConnections` object that will be iterated
616 over.
617 connectionType: `str`
618 The type of connections to iterate over, valid values are inputs,
619 outputs, prerequisiteInputs, initInputs, initOutputs.
621 Yields
622 -------
623 connection: `BaseConnection`
624 A connection defined on the input connections object of the type
625 supplied. The yielded value Will be an derived type of
626 `BaseConnection`.
627 """
628 if isinstance(connectionType, str):
629 connectionType = (connectionType,)
630 for name in itertools.chain.from_iterable(getattr(connections, ct) for ct in connectionType):
631 yield getattr(connections, name)
634@dataclass
635class AdjustQuantumHelper:
636 """Helper class for calling `PipelineTaskConnections.adjustQuantum`.
638 This class holds `input` and `output` mappings in the form used by
639 `Quantum` and execution harness code, i.e. with `DatasetType` keys,
640 translating them to and from the connection-oriented mappings used inside
641 `PipelineTaskConnections`.
642 """
644 inputs: NamedKeyMapping[DatasetType, typing.List[DatasetRef]]
645 """Mapping of regular input and prerequisite input datasets, grouped by
646 `DatasetType`.
647 """
649 outputs: NamedKeyMapping[DatasetType, typing.List[DatasetRef]]
650 """Mapping of output datasets, grouped by `DatasetType`.
651 """
653 inputs_adjusted: bool = False
654 """Whether any inputs were removed in the last call to `adjust_in_place`.
655 """
657 outputs_adjusted: bool = False
658 """Whether any outputs were removed in the last call to `adjust_in_place`.
659 """
661 def adjust_in_place(
662 self,
663 connections: PipelineTaskConnections,
664 label: str,
665 data_id: DataCoordinate,
666 ) -> None:
667 """Call `~PipelineTaskConnections.adjustQuantum` and update ``self``
668 with its results.
670 Parameters
671 ----------
672 connections : `PipelineTaskConnections`
673 Instance on which to call `~PipelineTaskConnections.adjustQuantum`.
674 label : `str`
675 Label for this task in the pipeline (should be used in all
676 diagnostic messages).
677 data_id : `lsst.daf.butler.DataCoordinate`
678 Data ID for this quantum in the pipeline (should be used in all
679 diagnostic messages).
680 """
681 # Translate self's DatasetType-keyed, Quantum-oriented mappings into
682 # connection-keyed, PipelineTask-oriented mappings.
683 inputs_by_connection: typing.Dict[str, typing.Tuple[BaseInput, typing.Tuple[DatasetRef, ...]]] = {}
684 outputs_by_connection: typing.Dict[str, typing.Tuple[Output, typing.Tuple[DatasetRef, ...]]] = {}
685 for name in itertools.chain(connections.inputs, connections.prerequisiteInputs):
686 connection = getattr(connections, name)
687 dataset_type_name = connection.name
688 inputs_by_connection[name] = (
689 connection,
690 tuple(self.inputs.get(dataset_type_name, ()))
691 )
692 for name in itertools.chain(connections.outputs):
693 connection = getattr(connections, name)
694 outputs_by_connection[name] = (
695 connection,
696 tuple(self.outputs.get(dataset_type_name, ()))
697 )
698 # Actually call adjustQuantum.
699 adjusted_inputs_by_connection, adjusted_outputs_by_connection = connections.adjustQuantum(
700 inputs_by_connection,
701 outputs_by_connection,
702 label,
703 data_id,
704 )
705 # Translate adjustments to DatasetType-keyed, Quantum-oriented form,
706 # installing new mappings in self if necessary.
707 if adjusted_inputs_by_connection:
708 adjusted_inputs = NamedKeyDict[DatasetType, typing.List[DatasetRef]](self.inputs)
709 for name, (connection, updated_refs) in adjusted_inputs_by_connection.items():
710 dataset_type_name = connection.name
711 if not set(updated_refs).issubset(self.inputs[dataset_type_name]):
712 raise RuntimeError(
713 f"adjustQuantum implementation for task with label {label} returned {name} "
714 f"({dataset_type_name}) input datasets that are not a subset of those "
715 f"it was given for data ID {data_id}."
716 )
717 adjusted_inputs[dataset_type_name] = list(updated_refs)
718 self.inputs = adjusted_inputs.freeze()
719 self.inputs_adjusted = True
720 else:
721 self.inputs_adjusted = False
722 if adjusted_outputs_by_connection is not None:
723 adjusted_outputs = NamedKeyDict[DatasetType, typing.List[DatasetRef]](self.outputs)
724 for name, (connection, updated_refs) in adjusted_outputs_by_connection.items():
725 if not set(updated_refs).issubset(self.outputs[dataset_type_name]):
726 raise RuntimeError(
727 f"adjustQuantum implementation for task with label {label} returned {name} "
728 f"({dataset_type_name}) output datasets that are not a subset of those "
729 f"it was given for data ID {data_id}."
730 )
731 adjusted_outputs[dataset_type_name] = list(updated_refs)
732 self.outputs = adjusted_outputs.freeze()
733 self.outputs_adjusted = True
734 else:
735 self.outputs_adjusted = False