lsst.meas.modelfit  21.0.0-2-gecfae73+5a509d4bfc
polynomials.h
Go to the documentation of this file.
1 // -*- lsst-c++ -*-
2 /*
3  * LSST Data Management System
4  * Copyright 2015 LSST/AURA
5  *
6  * This product includes software developed by the
7  * LSST Project (http://www.lsst.org/).
8  *
9  * This program is free software: you can redistribute it and/or modify
10  * it under the terms of the GNU General Public License as published by
11  * the Free Software Foundation, either version 3 of the License, or
12  * (at your option) any later version.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the LSST License Statement and
20  * the GNU General Public License along with this program. If not,
21  * see <http://www.lsstcorp.org/LegalNotices/>.
22  */
23 
24 #ifndef LSST_MEAS_MODELFIT_DETAIL_polynomials_h_INCLUDED
25 #define LSST_MEAS_MODELFIT_DETAIL_polynomials_h_INCLUDED
26 
27 #include "Eigen/Core"
28 
29 namespace lsst { namespace meas { namespace modelfit { namespace detail {
30 
36 template <int N>
37 class Vandermonde {
38 public:
39  typedef Eigen::Matrix<double,1,N> RowVector;
40 
43  static RowVector eval(double x);
44 
47  static RowVector differentiate1(double x);
48 
51  static RowVector differentiate2(double x);
52 
55  static RowVector moment(double x0, double x1, int m=0);
56 
57 };
58 
61 Eigen::Vector4d solveRampPoly(double v0, double v1, double x0, double x1, double s0, double s1);
62 
63 }}}} // namespace lsst::meas::modelfit::detail
64 
65 #endif // !LSST_MEAS_MODELFIT_DETAIL_polynomials_h_INCLUDED
Class that computes rows of the Vandermonde matrix and related matrices; the dot product of these row...
Definition: polynomials.h:37
static RowVector differentiate1(double x)
Return a row vector whose product with a polynomial coefficient vector evaluates the first derivative...
static RowVector eval(double x)
Return a row vector that product with a polynomial coefficient vector[ evaluates the polynomial at x.
static RowVector moment(double x0, double x1, int m=0)
Return a row vector whose product with a polynomial coefficient vector computes the integral of p(x) ...
Eigen::Matrix< double, 1, N > RowVector
Definition: polynomials.h:39
static RowVector differentiate2(double x)
Return a row vector whose product with a polynomial coefficient vector evaluates the second derivativ...
Eigen::Vector4d solveRampPoly(double v0, double v1, double x0, double x1, double s0, double s1)
Solve for the coefficients of a cubic polynomial p(x) that goes from p(x0)=v0 to p(x1)=v1,...