lsst.pipe.base  21.0.0-18-g546cdbd+1055867a56
Public Member Functions | Public Attributes | List of all members
lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext Class Reference

Public Member Functions

def __init__ (self, Butler butler, Quantum quantum)
 
object get (self, typing.Union[InputQuantizedConnection, typing.List[DatasetRef], DatasetRef] dataset)
 
def put (self, typing.Union[Struct, typing.List[typing.Any], object] values, typing.Union[OutputQuantizedConnection, typing.List[DatasetRef], DatasetRef] dataset)
 

Public Attributes

 quantum
 
 registry
 
 allInputs
 
 allOutputs
 

Detailed Description

A Butler-like class specialized for a single quantum

A ButlerQuantumContext class wraps a standard butler interface and
specializes it to the context of a given quantum. What this means
in practice is that the only gets and puts that this class allows
are DatasetRefs that are contained in the quantum.

In the future this class will also be used to record provenance on
what was actually get and put. This is in contrast to what the
preflight expects to be get and put by looking at the graph before
execution.

Parameters
----------
butler : `lsst.daf.butler.Butler`
    Butler object from/to which datasets will be get/put
quantum : `lsst.daf.butler.core.Quantum`
    Quantum object that describes the datasets which will be get/put by a
    single execution of this node in the pipeline graph.  All input
    dataset references must be resolved (i.e. satisfy
    ``DatasetRef.id is not None``) prior to constructing the
    `ButlerQuantumContext`.

Notes
-----
Most quanta in any non-trivial graph will not start with resolved dataset
references, because they represent processing steps that can only run
after some other quanta have produced their inputs.  At present, it is the
responsibility of ``lsst.ctrl.mpexec.SingleQuantumExecutor`` to resolve all
datasets prior to constructing `ButlerQuantumContext` and calling
`runQuantum`, and the fact that this precondition is satisfied by code in
a downstream package is considered a problem with the
``pipe_base/ctrl_mpexec`` separation of concerns that will be addressed in
the future.

Definition at line 35 of file butlerQuantumContext.py.

Constructor & Destructor Documentation

◆ __init__()

def lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.__init__ (   self,
Butler  butler,
Quantum  quantum 
)

Definition at line 71 of file butlerQuantumContext.py.

Member Function Documentation

◆ get()

object lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.get (   self,
typing.Union[InputQuantizedConnection, typing.List[DatasetRef], DatasetRef]  dataset 
)
Fetches data from the butler

Parameters
----------
dataset
    This argument may either be an `InputQuantizedConnection` which
    describes all the inputs of a quantum, a list of
    `~lsst.daf.butler.DatasetRef`, or a single
    `~lsst.daf.butler.DatasetRef`. The function will get and return
    the corresponding datasets from the butler.

Returns
-------
return : `object`
    This function returns arbitrary objects fetched from the bulter.
    The structure these objects are returned in depends on the type of
    the input argument. If the input dataset argument is a
    `InputQuantizedConnection`, then the return type will be a
    dictionary with keys corresponding to the attributes of the
    `InputQuantizedConnection` (which in turn are the attribute
    identifiers of the connections). If the input argument is of type
    `list` of `~lsst.daf.butler.DatasetRef` then the return type will
    be a list of objects.  If the input argument is a single
    `~lsst.daf.butler.DatasetRef` then a single object will be
    returned.

Raises
------
ValueError
    Raised if a `DatasetRef` is passed to get that is not defined in
    the quantum object

Definition at line 103 of file butlerQuantumContext.py.

◆ put()

def lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.put (   self,
typing.Union[Struct, typing.List[typing.Any], object]  values,
typing.Union[OutputQuantizedConnection, typing.List[DatasetRef], DatasetRef]  dataset 
)
Puts data into the butler

Parameters
----------
values : `Struct` or `list` of `object` or `object`
    The data that should be put with the butler. If the type of the
    dataset is `OutputQuantizedConnection` then this argument should be
    a `Struct` with corresponding attribute names. Each attribute
    should then correspond to either a list of object or a single
    object depending of the type of the corresponding attribute on
    dataset. I.e. if ``dataset.calexp`` is
    ``[datasetRef1, datasetRef2]`` then ``values.calexp`` should be
    ``[calexp1, calexp2]``. Like wise if there is a single ref, then
    only a single object need be passed. The same restriction applies
    if dataset is directly a `list` of `DatasetRef` or a single
    `DatasetRef`.
dataset
    This argument may either be an `InputQuantizedConnection` which
    describes all the inputs of a quantum, a list of
    `lsst.daf.butler.DatasetRef`, or a single
    `lsst.daf.butler.DatasetRef`. The function will get and return
    the corresponding datasets from the butler.

Raises
------
ValueError
    Raised if a `DatasetRef` is passed to put that is not defined in
    the quantum object, or the type of values does not match what is
    expected from the type of dataset.

Definition at line 154 of file butlerQuantumContext.py.

Member Data Documentation

◆ allInputs

lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.allInputs

Definition at line 74 of file butlerQuantumContext.py.

◆ allOutputs

lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.allOutputs

Definition at line 75 of file butlerQuantumContext.py.

◆ quantum

lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.quantum

Definition at line 72 of file butlerQuantumContext.py.

◆ registry

lsst.pipe.base.butlerQuantumContext.ButlerQuantumContext.registry

Definition at line 73 of file butlerQuantumContext.py.


The documentation for this class was generated from the following file: