Coverage for python/lsst/ctrl/mpexec/preExecInit.py : 10%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1# This file is part of ctrl_mpexec.
2#
3# Developed for the LSST Data Management System.
4# This product includes software developed by the LSST Project
5# (http://www.lsst.org).
6# See the COPYRIGHT file at the top-level directory of this distribution
7# for details of code ownership.
8#
9# This program is free software: you can redistribute it and/or modify
10# it under the terms of the GNU General Public License as published by
11# the Free Software Foundation, either version 3 of the License, or
12# (at your option) any later version.
13#
14# This program is distributed in the hope that it will be useful,
15# but WITHOUT ANY WARRANTY; without even the implied warranty of
16# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17# GNU General Public License for more details.
18#
19# You should have received a copy of the GNU General Public License
20# along with this program. If not, see <http://www.gnu.org/licenses/>.
22__all__ = ['PreExecInit']
24# -------------------------------
25# Imports of standard modules --
26# -------------------------------
27import logging
28import itertools
30# -----------------------------
31# Imports for other modules --
32# -----------------------------
33from lsst.base import Packages
34from lsst.daf.butler import DatasetType
35from lsst.pipe.base import PipelineDatasetTypes
37_LOG = logging.getLogger(__name__.partition(".")[2])
40class PreExecInit:
41 """Initialization of registry for QuantumGraph execution.
43 This class encapsulates all necessary operations that have to be performed
44 on butler and registry to prepare them for QuantumGraph execution.
46 Parameters
47 ----------
48 butler : `~lsst.daf.butler.Butler`
49 Data butler instance.
50 taskFactory : `~lsst.pipe.base.TaskFactory`
51 Task factory.
52 skipExisting : `bool`, optional
53 If `True` then do not try to overwrite any datasets that might exist
54 in the butler. If `False` then any existing conflicting dataset will
55 cause butler exception.
56 """
57 def __init__(self, butler, taskFactory, skipExisting=False):
58 self.butler = butler
59 self.taskFactory = taskFactory
60 self.skipExisting = skipExisting
62 def initialize(self, graph, saveInitOutputs=True, registerDatasetTypes=False, saveVersions=True):
63 """Perform all initialization steps.
65 Convenience method to execute all initialization steps. Instead of
66 calling this method and providing all options it is also possible to
67 call methods individually.
69 Parameters
70 ----------
71 graph : `~lsst.pipe.base.QuantumGraph`
72 Execution graph.
73 saveInitOutputs : `bool`, optional
74 If ``True`` (default) then save "init outputs", configurations,
75 and package versions to butler.
76 registerDatasetTypes : `bool`, optional
77 If ``True`` then register dataset types in registry, otherwise
78 they must be already registered.
79 saveVersions : `bool`, optional
80 If ``False`` then do not save package versions even if
81 ``saveInitOutputs`` is set to ``True``.
82 """
83 # register dataset types or check consistency
84 self.initializeDatasetTypes(graph, registerDatasetTypes)
86 # Save task initialization data or check that saved data
87 # is consistent with what tasks would save
88 if saveInitOutputs:
89 self.saveInitOutputs(graph)
90 self.saveConfigs(graph)
91 if saveVersions:
92 self.savePackageVersions(graph)
94 def initializeDatasetTypes(self, graph, registerDatasetTypes=False):
95 """Save or check DatasetTypes output by the tasks in a graph.
97 Iterates over all DatasetTypes for all tasks in a graph and either
98 tries to add them to registry or compares them to exising ones.
100 Parameters
101 ----------
102 graph : `~lsst.pipe.base.QuantumGraph`
103 Execution graph.
104 registerDatasetTypes : `bool`, optional
105 If ``True`` then register dataset types in registry, otherwise
106 they must be already registered.
108 Raises
109 ------
110 ValueError
111 Raised if existing DatasetType is different from DatasetType
112 in a graph.
113 KeyError
114 Raised if ``registerDatasetTypes`` is ``False`` and DatasetType
115 does not exist in registry.
116 """
117 pipeline = graph.taskGraph
119 # Make dataset types for configurations
120 configDatasetTypes = [DatasetType(taskDef.configDatasetName, {},
121 storageClass="Config",
122 universe=self.butler.registry.dimensions)
123 for taskDef in pipeline]
125 # And one dataset type for package versions
126 packagesDatasetType = DatasetType("packages", {},
127 storageClass="Packages",
128 universe=self.butler.registry.dimensions)
130 datasetTypes = PipelineDatasetTypes.fromPipeline(pipeline, registry=self.butler.registry)
131 for datasetType in itertools.chain(datasetTypes.initIntermediates, datasetTypes.initOutputs,
132 datasetTypes.intermediates, datasetTypes.outputs,
133 configDatasetTypes, [packagesDatasetType]):
134 # Only composites are registered, no components, and by this point
135 # the composite should already exist.
136 if registerDatasetTypes and not datasetType.isComponent():
137 _LOG.debug("Registering DatasetType %s with registry", datasetType)
138 # this is a no-op if it already exists and is consistent,
139 # and it raises if it is inconsistent.
140 self.butler.registry.registerDatasetType(datasetType)
141 else:
142 _LOG.debug("Checking DatasetType %s against registry", datasetType)
143 expected = self.butler.registry.getDatasetType(datasetType.name)
144 if datasetType.isComponent() \
145 and datasetType.parentStorageClass == DatasetType.PlaceholderParentStorageClass:
146 # Force the parent storage classes to match since we
147 # are using a placeholder
148 datasetType.finalizeParentStorageClass(expected.parentStorageClass)
149 if expected != datasetType:
150 raise ValueError(f"DatasetType configuration does not match Registry: "
151 f"{datasetType} != {expected}")
153 def saveInitOutputs(self, graph):
154 """Write any datasets produced by initializing tasks in a graph.
156 Parameters
157 ----------
158 graph : `~lsst.pipe.base.QuantumGraph`
159 Execution graph.
161 Raises
162 ------
163 Exception
164 Raised if ``skipExisting`` is `False` and datasets already
165 exists. Content of a butler collection may be changed if
166 exception is raised.
168 Notes
169 -----
170 If ``skipExisting`` is `True` then existing datasets are not
171 overwritten, instead we should check that their stored object is
172 exactly the same as what we would save at this time. Comparing
173 arbitrary types of object is, of course, non-trivial. Current
174 implementation only checks the existence of the datasets and their
175 types against the types of objects produced by tasks. Ideally we
176 would like to check that object data is identical too but presently
177 there is no generic way to compare objects. In the future we can
178 potentially introduce some extensible mechanism for that.
179 """
180 _LOG.debug("Will save InitOutputs for all tasks")
181 for taskDef in graph.iterTaskGraph():
182 task = self.taskFactory.makeTask(taskDef.taskClass, taskDef.config, None, self.butler)
183 for name in taskDef.connections.initOutputs:
184 attribute = getattr(taskDef.connections, name)
185 initOutputVar = getattr(task, name)
186 objFromStore = None
187 if self.skipExisting:
188 # check if it is there already
189 _LOG.debug("Retrieving InitOutputs for task=%s key=%s dsTypeName=%s",
190 task, name, attribute.name)
191 try:
192 objFromStore = self.butler.get(attribute.name, {})
193 # Types are supposed to be identical.
194 # TODO: Check that object contents is identical too.
195 if type(objFromStore) is not type(initOutputVar):
196 raise TypeError(f"Stored initOutput object type {type(objFromStore)} "
197 f"is different from task-generated type "
198 f"{type(initOutputVar)} for task {taskDef}")
199 except LookupError:
200 pass
201 if objFromStore is None:
202 # butler will raise exception if dataset is already there
203 _LOG.debug("Saving InitOutputs for task=%s key=%s", task, name)
204 self.butler.put(initOutputVar, attribute.name, {})
206 def saveConfigs(self, graph):
207 """Write configurations for pipeline tasks to butler or check that
208 existing configurations are equal to the new ones.
210 Parameters
211 ----------
212 graph : `~lsst.pipe.base.QuantumGraph`
213 Execution graph.
215 Raises
216 ------
217 Exception
218 Raised if ``skipExisting`` is `False` and datasets already exists.
219 Content of a butler collection should not be changed if exception
220 is raised.
221 """
222 def logConfigMismatch(msg):
223 """Log messages about configuration mismatch.
224 """
225 _LOG.fatal("Comparing configuration: %s", msg)
227 _LOG.debug("Will save Configs for all tasks")
228 # start transaction to rollback any changes on exceptions
229 with self.butler.transaction():
230 for taskDef in graph.taskGraph:
231 configName = taskDef.configDatasetName
233 oldConfig = None
234 if self.skipExisting:
235 try:
236 oldConfig = self.butler.get(configName, {})
237 if not taskDef.config.compare(oldConfig, shortcut=False, output=logConfigMismatch):
238 raise TypeError(
239 f"Config does not match existing task config {configName!r} in butler; "
240 "tasks configurations must be consistent within the same run collection")
241 except LookupError:
242 pass
243 if oldConfig is None:
244 # butler will raise exception if dataset is already there
245 _LOG.debug("Saving Config for task=%s dataset type=%s", taskDef.label, configName)
246 self.butler.put(taskDef.config, configName, {})
248 def savePackageVersions(self, graph):
249 """Write versions of software packages to butler.
251 Parameters
252 ----------
253 graph : `~lsst.pipe.base.QuantumGraph`
254 Execution graph.
256 Raises
257 ------
258 Exception
259 Raised if ``checkExisting`` is ``True`` but versions are not
260 compatible.
261 """
262 packages = Packages.fromSystem()
263 _LOG.debug("want to save packages: %s", packages)
264 datasetType = "packages"
265 dataId = {}
266 oldPackages = None
267 # start transaction to rollback any changes on exceptions
268 with self.butler.transaction():
269 if self.skipExisting:
270 try:
271 oldPackages = self.butler.get(datasetType, dataId, collections=[self.butler.run])
272 _LOG.debug("old packages: %s", oldPackages)
273 except LookupError:
274 pass
275 if oldPackages is not None:
276 # Note that because we can only detect python modules that have been imported, the stored
277 # list of products may be more or less complete than what we have now. What's important is
278 # that the products that are in common have the same version.
279 diff = packages.difference(oldPackages)
280 if diff:
281 versions_str = "; ".join(f"{pkg}: {diff[pkg][1]} vs {diff[pkg][0]}" for pkg in diff)
282 raise TypeError(f"Package versions mismatch: ({versions_str})")
283 else:
284 _LOG.debug("new packages are consistent with old")
285 # Update the old set of packages in case we have more packages that haven't been persisted.
286 extra = packages.extra(oldPackages)
287 if extra:
288 _LOG.debug("extra packages: %s", extra)
289 oldPackages.update(packages)
290 # have to remove existing dataset first, butler nas no replace option
291 ref = self.butler.registry.findDataset(datasetType, dataId, collections=[self.butler.run])
292 self.butler.pruneDatasets([ref], unstore=True, purge=True)
293 self.butler.put(oldPackages, datasetType, dataId)
294 else:
295 self.butler.put(packages, datasetType, dataId)