Coverage for python/lsst/sims/maf/metrics/dcrMetric.py : 20%

Hot-keys on this page
r m x p toggle line displays
j k next/prev highlighted chunk
0 (zero) top of page
1 (one) first highlighted chunk
1import numpy as np
2from .baseMetric import BaseMetric
3import lsst.sims.maf.utils as mafUtils
4import lsst.sims.utils as utils
7__all__ = ['DcrPrecisionMetric']
10class DcrPrecisionMetric(BaseMetric):
11 """Determine how precise a DCR correction could be made
13 Parameters
14 ----------
15 atm_err : float
16 Minimum error in photometry centroids introduced by the atmosphere (arcseconds). Default 0.01.
17 """
19 def __init__(self, metricName='DCRprecision', seeingCol='seeingFwhmGeom',
20 m5Col='fiveSigmaDepth', HACol='HA', PACol='paraAngle',
21 filterCol='filter', atm_err=0.01, SedTemplate='flat',
22 rmag=20., **kwargs):
24 self.m5Col = m5Col
25 self.filterCol = filterCol
26 self.PACol = PACol
27 self.seeingCol = seeingCol
28 self.mags = {}
29 self.filters = ['u', 'g', 'r', 'i', 'z', 'y']
30 if SedTemplate == 'flat':
31 for f in self.filters:
32 self.mags[f] = rmag
33 else:
34 self.mags = utils.stellarMags(SedTemplate, rmag=rmag)
35 cols = ['ra_dcr_amp', 'dec_dcr_amp', seeingCol, m5Col, filterCol, 'zenithDistance', PACol]
36 units = 'arcseconds'
37 self.atm_err = atm_err
38 super(DcrPrecisionMetric, self).__init__(cols, metricName=metricName, units=units,
39 **kwargs)
41 def run(self, dataSlice, slicePoint=None):
43 snr = np.zeros(len(dataSlice), dtype='float')
44 for filt in self.filters:
45 inFilt = np.where(dataSlice[self.filterCol] == filt)
46 snr[inFilt] = mafUtils.m52snr(self.mags[filt], dataSlice[self.m5Col][inFilt])
48 position_errors = np.sqrt(mafUtils.astrom_precision(dataSlice[self.seeingCol], snr)**2 +
49 self.atm_err**2)
51 x_coord = np.tan(np.radians(dataSlice['zenithDistance']))*np.sin(np.radians(dataSlice[self.PACol]))
52 x_coord2 = np.tan(np.radians(dataSlice['zenithDistance']))*np.cos(np.radians(dataSlice[self.PACol]))
53 # Things should be the same for RA and dec.
54 # Now I want to compute the error if I interpolate/extrapolate to +/-1.
56 # function is of form, y=ax. a=y/x. da = dy/x.
57 # Only strictly true if we know the unshifted position. But this should be a reasonable approx.
58 slope_uncerts = position_errors/x_coord
59 slope_uncerts2 = position_errors/x_coord2
61 total_slope_uncert = 1./np.sqrt(np.sum(1./slope_uncerts**2)+np.sum(1./slope_uncerts2**2))
63 # So, this will be the uncertainty in the RA or Dec offset at x= +/- 1. A.K.A., the uncertainty in the slope
64 # of the line made by tan(zd)*sin(PA) vs RA offset
65 # or the line tan(zd)*cos(PA) vs Dec offset
66 # Assuming we know the unshfted position of the object (or there's little covariance if we are fitting for both)
67 result = total_slope_uncert
69 return result