lsst.meas.algorithms
19.0.0-17-gde1f5b76+6
|
Classes | |
class | PcaPsfDeterminerConfig |
class | PcaPsfDeterminerTask |
Functions | |
def | numCandidatesToReject (numBadCandidates, numIter, totalIter) |
def | candidatesIter (psfCellSet, ignoreBad=True) |
def lsst.meas.algorithms.pcaPsfDeterminer.candidatesIter | ( | psfCellSet, | |
ignoreBad = True |
|||
) |
Generator for Psf candidates. This allows two 'for' loops to be reduced to one. Parameters ---------- psfCellSet : `lsst.afw.math.SpatialCellSet` SpatialCellSet of PSF candidates. ignoreBad : `bool`, optional Ignore candidates flagged as BAD? Yields ------- cell : `lsst.afw.math.SpatialCell` A SpatialCell. cand : `lsst.meas.algorithms.PsfCandidate` A PsfCandidate.
Definition at line 651 of file pcaPsfDeterminer.py.
def lsst.meas.algorithms.pcaPsfDeterminer.numCandidatesToReject | ( | numBadCandidates, | |
numIter, | |||
totalIter | |||
) |
Return the number of PSF candidates to be rejected. The number of candidates being rejected on each iteration gradually increases, so that on the Nth of M iterations we reject N/M of the bad candidates. Parameters ---------- numBadCandidates : `int` Number of bad candidates under consideration. numIter : `int` The number of the current PSF iteration. totalIter : `int` The total number of PSF iterations. Returns ------- return : `int` Number of candidates to reject.
Definition at line 44 of file pcaPsfDeterminer.py.