lsst.meas.astrom
14.0-7-g0d69b06+3
|
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP convention. More...
#include <SipTransform.h>
Public Member Functions | |
SipReverseTransform (afw::geom::Point2D const &pixelOrigin, afw::geom::LinearTransform const &cdMatrix, PolynomialTransform const &reverseSipPoly) | |
Construct a SipReverseTransform from its components. More... | |
SipReverseTransform (SipReverseTransform const &other)=default | |
SipReverseTransform (SipReverseTransform &&other)=default | |
SipReverseTransform & | operator= (SipReverseTransform const &other)=default |
SipReverseTransform & | operator= (SipReverseTransform &&other)=default |
void | swap (SipReverseTransform &other) |
afw::geom::AffineTransform | linearize (afw::geom::Point2D const &in) const |
Return an approximate affine transform at the given point. More... | |
afw::geom::Point2D | operator() (afw::geom::Point2D const &xy) const |
Apply the transform to a point. More... | |
SipReverseTransform | transformPixels (afw::geom::AffineTransform const &s) const |
Return a new reverse SIP transform that includes a transformation of the pixel coordinate system by the given affine transform. More... | |
afw::geom::Point2D const & | getPixelOrigin () const |
Return the pixel origin (CRPIX, but zero-indexed) of the transform. More... | |
afw::geom::LinearTransform const & | getCdMatrix () const |
Return the CD matrix of the transform. More... | |
PolynomialTransform const & | getPoly () const |
Return the polynomial component of the transform (A,B) or (AP,BP). More... | |
Static Public Member Functions | |
static SipReverseTransform | convert (PolynomialTransform const &poly, afw::geom::Point2D const &pixelOrigin, afw::geom::LinearTransform const &cdMatrix) |
Convert a PolynomialTransform to an equivalent SipReverseTransform. More... | |
static SipReverseTransform | convert (ScaledPolynomialTransform const &scaled, afw::geom::Point2D const &pixelOrigin, afw::geom::LinearTransform const &cdMatrix) |
Convert a ScaledPolynomialTransform to an equivalent SipReverseTransform. More... | |
static SipReverseTransform | convert (ScaledPolynomialTransform const &scaled) |
Convert a ScaledPolynomialTransform to an equivalent SipReverseTransform. More... | |
Protected Member Functions | |
void | swap (SipTransformBase &other) |
void | transformPixelsInPlace (afw::geom::AffineTransform const &s) |
Protected Attributes | |
afw::geom::Point2D | _pixelOrigin |
afw::geom::LinearTransform | _cdMatrix |
PolynomialTransform | _poly |
Friends | |
class | PolynomialTransform |
class | ScaledPolynomialTransform |
A transform that maps intermediate world coordinates to pixel coordinates according to the SIP convention.
The SIP reverse transform is defined as
\[ \left[\begin{array}{ c } u \\ v \end{array}\right] = \left[\begin{array}{ c } u_0 + U + {\displaystyle\sum_{p,q}^{0 \le p + q \le N}} \mathrm{AP}_{p,q} U^p V^q \\ v_0 + V + {\displaystyle\sum_{p,q}^{0 \le p + q \le N}} \mathrm{BP}_{p,q} U^p V^q \\ \end{array}\right] \]
with
\[ \left[\begin{array}{ c } U \\ V \end{array}\right] = \mathbf{Z}^{-1} \left[\begin{array}{ c } x \\ y \end{array}\right] \]
and
SipForwardTransform instances should be confined to a single thread.
Definition at line 274 of file SipTransform.h.
|
inline |
Construct a SipReverseTransform from its components.
[in] | pixelOrigin | CRPIX \((u_0,v_0)\) (zero-indexed) |
[in] | cdMatrix | CD matrix \(Z\) |
[in] | reverseSipPoly | Polynomial transform \((AP,BP)\) |
Definition at line 319 of file SipTransform.h.
|
default |
|
default |
|
static |
Convert a PolynomialTransform to an equivalent SipReverseTransform.
[in] | poly | PolynomialTransform to convert. |
[in] | pixelOrigin | CRPIX \((u_0,v_0)\) (zero-indexed) |
[in] | cdMatrix | CD matrix \(Z\) |
Definition at line 109 of file SipTransform.cc.
|
static |
Convert a ScaledPolynomialTransform to an equivalent SipReverseTransform.
[in] | scaled | ScaledPolynomialTransform to convert. |
[in] | pixelOrigin | CRPIX \((u_0,v_0)\) (zero-indexed) |
[in] | cdMatrix | CD matrix \(Z\) |
Definition at line 128 of file SipTransform.cc.
|
static |
Convert a ScaledPolynomialTransform to an equivalent SipReverseTransform.
The pixel origin CRPIX and CD matrix are defined to reproduce the translation and linear transformation in the ScaledPolynomialTransforms output and input scalings (respectively).
Definition at line 148 of file SipTransform.cc.
|
inlineinherited |
Return the CD matrix of the transform.
Definition at line 63 of file SipTransform.h.
|
inlineinherited |
Return the pixel origin (CRPIX, but zero-indexed) of the transform.
Definition at line 58 of file SipTransform.h.
|
inlineinherited |
Return the polynomial component of the transform (A,B) or (AP,BP).
Definition at line 68 of file SipTransform.h.
afw::geom::AffineTransform lsst::meas::astrom::SipReverseTransform::linearize | ( | afw::geom::Point2D const & | in | ) | const |
Return an approximate affine transform at the given point.
Definition at line 163 of file SipTransform.cc.
afw::geom::Point2D lsst::meas::astrom::SipReverseTransform::operator() | ( | afw::geom::Point2D const & | xy | ) | const |
Apply the transform to a point.
Definition at line 169 of file SipTransform.cc.
|
default |
|
default |
|
inlineprotectedinherited |
Definition at line 98 of file SipTransform.h.
|
inline |
Definition at line 335 of file SipTransform.h.
SipReverseTransform lsst::meas::astrom::SipReverseTransform::transformPixels | ( | afw::geom::AffineTransform const & | s | ) | const |
Return a new reverse SIP transform that includes a transformation of the pixel coordinate system by the given affine transform.
Definition at line 156 of file SipTransform.cc.
|
protectedinherited |
Definition at line 34 of file SipTransform.cc.
|
friend |
Definition at line 357 of file SipTransform.h.
|
friend |
Definition at line 358 of file SipTransform.h.
|
protectedinherited |
Definition at line 107 of file SipTransform.h.
|
protectedinherited |
Definition at line 106 of file SipTransform.h.
|
protectedinherited |
Definition at line 108 of file SipTransform.h.