|
lsst.meas.algorithms
19.0.0-13-gc12c6924
|
Functions | |
| def | plantSources (bbox, kwid, sky, coordList, addPoissonNoise=True) |
| def | makeRandomTransmissionCurve (rng, minWavelength=4000.0, maxWavelength=7000.0, nWavelengths=200, maxRadius=80.0, nRadii=30, perturb=0.05) |
| def lsst.meas.algorithms.testUtils.makeRandomTransmissionCurve | ( | rng, | |
minWavelength = 4000.0, |
|||
maxWavelength = 7000.0, |
|||
nWavelengths = 200, |
|||
maxRadius = 80.0, |
|||
nRadii = 30, |
|||
perturb = 0.05 |
|||
| ) |
Create a random TransmissionCurve with nontrivial spatial and
wavelength variation.
Parameters
----------
rng : numpy.random.RandomState
Random number generator.
minWavelength : float
Average minimum wavelength for generated TransmissionCurves (will be
randomly perturbed).
maxWavelength : float
Average maximum wavelength for generated TransmissionCurves (will be
randomly perturbed).
nWavelengths : int
Number of samples in the wavelength dimension.
maxRadius : float
Average maximum radius for spatial variation (will be perturbed).
nRadii : int
Number of samples in the radial dimension.
perturb: float
Fraction by which wavelength and radius bounds should be randomly
perturbed.
Definition at line 89 of file testUtils.py.
| def lsst.meas.algorithms.testUtils.plantSources | ( | bbox, | |
| kwid, | |||
| sky, | |||
| coordList, | |||
addPoissonNoise = True |
|||
| ) |
Make an exposure with stars (modelled as Gaussians)
@param bbox: parent bbox of exposure
@param kwid: kernel width (and height; kernel is square)
@param sky: amount of sky background (counts)
@param coordList: a list of [x, y, counts, sigma], where:
* x,y are relative to exposure origin
* counts is the integrated counts for the star
* sigma is the Gaussian sigma in pixels
@param addPoissonNoise: add Poisson noise to the exposure?
Definition at line 31 of file testUtils.py.
1.8.13